Menu

Blog

Archive for the ‘mathematics’ category: Page 8

Feb 16, 2024

Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects

Posted by in categories: biotech/medical, chemistry, employment, ethics, health, mathematics, neuroscience, robotics/AI

This isn’t rocket science it’s neuroscience.


Ever since the dawn of antiquity, people have strived to improve their cognitive abilities. From the advent of the wheel to the development of artificial intelligence, technology has had a profound leverage on civilization. Cognitive enhancement or augmentation of brain functions has become a trending topic both in academic and public debates in improving physical and mental abilities. The last years have seen a plethora of suggestions for boosting cognitive functions and biochemical, physical, and behavioral strategies are being explored in the field of cognitive enhancement. Despite expansion of behavioral and biochemical approaches, various physical strategies are known to boost mental abilities in diseased and healthy individuals. Clinical applications of neuroscience technologies offer alternatives to pharmaceutical approaches and devices for diseases that have been fatal, so far. Importantly, the distinctive aspect of these technologies, which shapes their existing and anticipated participation in brain augmentations, is used to compare and contrast them. As a preview of the next two decades of progress in brain augmentation, this article presents a plausible estimation of the many neuroscience technologies, their virtues, demerits, and applications. The review also focuses on the ethical implications and challenges linked to modern neuroscientific technology. There are times when it looks as if ethics discussions are more concerned with the hypothetical than with the factual. We conclude by providing recommendations for potential future studies and development areas, taking into account future advancements in neuroscience innovation for brain enhancement, analyzing historical patterns, considering neuroethics and looking at other related forecasts.

Keywords: brain 2025, brain machine interface, deep brain stimulation, ethics, non-invasive and invasive brain stimulation.

Continue reading “Brain augmentation and neuroscience technologies: current applications, challenges, ethics and future prospects” »

Feb 16, 2024

New chip opens door to AI computing at light speed

Posted by in categories: mathematics, nanotechnology, robotics/AI

University of Pennsylvania engineers have developed a new chip that uses light waves, rather than electricity, to perform the complex math essential to training AI. The chip has the potential to radically accelerate the processing speed of computers while also reducing their energy consumption.

The silicon-photonic (SiPh) chip’s design is the first to bring together Benjamin Franklin Medal Laureate and H. Nedwill Ramsey Professor Nader Engheta’s pioneering research in manipulating materials at the nanoscale to perform mathematical computations using light—the fastest possible means of communication—with the SiPh platform, which uses silicon, the cheap, used to mass-produce computer chips.

The interaction of with matter represents one possible avenue for developing computers that supersede the limitations of today’s chips, which are essentially based on the same principles as chips from the earliest days of the computing revolution in the 1960s.

Feb 14, 2024

Google DeepMind’s New AI Matches Gold Medal Performance in Math Olympics

Posted by in categories: information science, mathematics, robotics/AI

After cracking an unsolvable mathematics problem last year, AI is back to tackle geometry.

Developed by Google DeepMind, a new algorithm, AlphaGeometry, can crush problems from past International Mathematical Olympiads—a top-level competition for high schoolers—and matches the performance of previous gold medalists.

When challenged with 30 difficult geometry problems, the AI successfully solved 25 within the standard allotted time, beating previous state-of-the-art algorithms by 15 answers.

Feb 13, 2024

Time and Quantum Mechanics SOLVED? | Lee Smolin

Posted by in categories: biological, mathematics, quantum physics, space

Lee Smolin joins TOE to discuss his work in theoretical physics, the dynamic nature of the laws of physics and the concept of time.

TIMESTAMPS:
00:00:00 — Intro.
00:04:13 — Doubly Special Relativity and Violation of Lorentz Invariance.
00:09:15 — The Concept of Thick Time.
00:19:11 — Duality Between String Theory and Loop Quantum Gravity.
00:23:50 — Condensed Matter Theory.
00:28:35 — Approximating by a Continuum and Discrete Sets.
00:34:11 — Misapprehensions about Loop Quantum Gravity.
00:38:43 — Defining Complexity and the View of the Universe by One Observer.
00:43:52 — Causal Energetic: The Relationship Between Varieties and Kinetic Energy.
00:48:38 — Varying Parameters in the Universe.
00:53:35 — The Bomes Interpretation of Quantum Mechanics.
00:58:30 — Causality and Relativity.
01:03:15 — Different Styles in Mathematics and Chess.
01:07:55 — The Fundamental Questions in Biology.
01:12:49 — Marrying Outside Your Field.
01:18:04 — Discussion on Authors and Novels.
01:23:35 — Conversations with Fire Robin.
01:28:39 — Being Sincere and Ambitious.
01:33:39 — A Visit from BJ
01:38:34 — Outro.

Continue reading “Time and Quantum Mechanics SOLVED? | Lee Smolin” »

Feb 12, 2024

Revolutionizing Physics With a Game-Changing Topological Approach

Posted by in categories: mathematics, physics

Innovative research introduces a practical, model-free method for exploring topological properties in materials, enhancing the scope and efficiency of topological studies.

The branch of mathematics known as topology has become a cornerstone of modern physics thanks to the remarkable – and above all reliable – properties it can impart to a material or system. Unfortunately, identifying topological systems, or even designing new ones, is generally a tedious process that requires exactly matching the physical system to a mathematical model.

Researchers at the University of Amsterdam and the École Normale Supérieure of Lyon have demonstrated a model-free method for identifying topology, enabling the discovery of new topological materials using a purely experimental approach.

Feb 12, 2024

Paper page — InternLM-Math: Open Math Large Language Models Toward Verifiable Reasoning

Posted by in category: mathematics

Join the discussion on this paper page.

Feb 10, 2024

The Extraordinary Theorems of John Nash — with Cédric Villani

Posted by in category: mathematics

Fields medalist Cédric Villani explains some of John Nash’s most amazing theorems.


Fields medal winner Cédric Villani takes us through the very special world of mathematical creation of John Nash, who founded several new chapters of game theory and geometric analysis in just a few revolutionary contributions that seemed to come from nowhere.
Subscribe for regular science videos: http://bit.ly/RiSubscRibe.

Continue reading “The Extraordinary Theorems of John Nash — with Cédric Villani” »

Feb 9, 2024

Revolutionizing Diabetes Prediction: Simple Blood Test Outperforms Complex Methods, Thanks to Mathematical Modeling

Posted by in categories: biotech/medical, mathematics

Discover how a simple blood test is transforming diabetes prediction, outperforming complex methods, all thanks to the power of mathematical modeling.

Feb 7, 2024

Research team takes a fundamental step toward a functioning quantum internet

Posted by in categories: computing, internet, mathematics, quantum physics

Hong-Ou-Mandel interference of single-#photon-level pulses stored in independent room-temperature #quantum #memories Quantum #repeater #networks require independent absorptive quantum memories capable of #storing and #retrieving indistinguishable photons to perform high-repetition entanglement…


Research with quantum computing and quantum networks is taking place around the world in the hopes of developing a quantum internet in the future. A quantum internet would be a network of quantum computers, sensors, and communication devices that will create, process, and transmit quantum states and entanglement and is anticipated to enhance society’s internet system and provide certain services and securities that the current internet does not have.

A team of Stony Brook University physicists and their collaborators have taken a significant step toward the building of a testbed by demonstrating a foundational quantum network measurement that employs room-temperature . Their findings are described in a paper published in npj Quantum Information.

Continue reading “Research team takes a fundamental step toward a functioning quantum internet” »

Feb 6, 2024

Paper page — DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models

Posted by in category: mathematics

DeepSeekMath.

Pushing the limits of mathematical reasoning in open language models.


Join the discussion on this paper page.

Page 8 of 135First56789101112Last