Toggle light / dark theme

Why are Tatooine planets rare? General relativity explains why binary star systems rarely host planets

Astronomers have found thousands of exoplanets around single stars, but few around binary stars—even though both types of stars are equally common. Physicists can now explain the dearth.

Of the more than 4,500 stars known to have planets, one puzzling statistic stands out. Even though nearly all stars are expected to have planets and most stars form in pairs, planets that orbit both stars in a pair are rare.

Of the more than 6,000 extrasolar planets, or exoplanets, confirmed to date—most of them found by NASA’s Kepler Space Telescope and the Transiting Exoplanet Survey Satellite (TESS)—only 14 are observed to orbit binary stars. There should be hundreds. Where are all the planets with two suns, like Tatooine in Star Wars?

Shining a light on sustainable sulfur-rich polymers that stay recyclable

For the first time, scientists have used ultraviolet (UV) light, a low-cost and readily available energy source, to successfully synthesize more sustainable and recyclable polymer materials. Led by green chemistry experts at Flinders University, the development is a major step in making polymers high in sulfur content for more sustainable plastic alternatives using waste materials.

Their paper, “Making and Unmaking Poly(trisulfides) with Light: Precise Regulation of Radical Concentrations via Pulsed LED Irradiation” is published in the Journal of the American Chemical Society.

3D covalent organic framework offers sustainable solution for wastewater treatment

Industrial dye pollution remains one of the most persistent and hazardous challenges in global wastewater management. The dyes from textile and chemical manufacturing sectors are difficult to remove, non-biodegradable, and can be toxic to plants, animals, and humans. However, conventional treatment technologies for dyes often fail to efficiently purify the wastewater without significant trade-offs.

To remedy this issue, researchers from Tohoku University developed a three-dimensional covalent organic framework (COF), TU-123, that enables highly efficient and selective removal of anionic dyes from contaminated water.

The highly porous COF acts like a sponge—trapping dyes for easier separation. This work establishes a new structural blueprint for constructing highly connected imidazole-linked three-dimensional COFs. Furthermore, it opens sustainable pathways for advanced wastewater purification technologies.

‘Thermal diode’ design promises to improve heat regulation, prolonging battery life

New technology from University of Houston researchers could improve the way devices manage heat, thanks to a technique that allows heat to flow in only one direction. The innovation is known as thermal rectification, and was developed by Bo Zhao, an award-winning and internationally recognized engineering professor at the Cullen College of Engineering, and his doctoral student Sina Jafari Ghalekohneh. The work is published in Physical Review Research.

A new way to steer heat

This new technology gives engineers a new way to control radiative heat with the same precision that electronic diodes control electrical currents, which means longer-lasting batteries for cell phones, electric vehicles and even satellites. It also has the potential to change our approach to AI data centers.

Prenatal exposure to air pollution associated with lower cognitive performance in early childhood

The prenatal period is a critical window for brain development, yet few studies have examined the impact of air pollution exposure during pregnancy on child cognition. A new study led by the Barcelona Institute for Global Health (ISGlobal), in collaboration with the University of Barcelona (UB), shows that prenatal exposure to pollution is associated with lower cognitive performance in newborns.

These findings highlight the importance of reducing air pollution exposure, especially during pregnancy, to protect neurodevelopment.

The study, published in Environmental Pollution, included data from 168 mother-child pairs participating in the BiSC (Barcelona Life Study Cohort) project, conducted in Barcelona between 2018 and 2023.

Powering AI from space, at scale, with a passive tether design

Penn Engineers have developed a novel design for solar-powered data centers that will orbit Earth and could realistically scale to meet the growing demand for AI computing while reducing the environmental impact of data centers.

Reminiscent of a leafy plant, with multiple, hardware-containing stems connected to branching, leaf-like solar panels, the design leverages decades of research on “tethers,” rope-like cables that naturally orient themselves under the competing forces of gravity and centrifugal motion. This architecture could scale to the thousands of computing nodes needed to replicate the power of terrestrial data centers, at least for AI inference, the process of querying tools like ChatGPT after their training concludes.

Unlike prior designs, which typically require constant adjustments to keep solar panels pointed toward the sun, the new system is largely passive, its orientation maintained by natural forces acting on objects in orbit. By relying on these stabilizing effects, the design reduces weight, power consumption, and overall complexity, making large-scale deployment more feasible.

Highly stable Cu₄₅ superatom could transform carbon recycling

After years of trying, scientists have finally created a stable superatom of copper, a long-sought-after chemical breakthrough that could revolutionize how we deal with carbon emissions.

Copper is a cheap and common metal, and because of its ability to bind carbon atoms together (C-C coupling), scientists have wanted to use it to turn carbon dioxide into products like ethylene for plastics and fuels. However, it corrodes or falls apart almost immediately when exposed to air or harsh industrial conditions.

A superatom is a cluster of atoms that behaves like a single atom, but with greater stability. In this new study published in the Journal of the American Chemical Society, scientists from Tsinghua University in Beijing built a nanocluster made from 45 copper atoms (Cu45).

‘Goldilocks size’ rhodium clusters advance reusable heterogeneous catalysts for hydroformylation

Recent research has demonstrated that a rhodium (Rh) cluster of an optimal, intermediate size—neither too small nor too large—exhibits the highest catalytic activity in hydroformylation reactions. Similar to the concept of finding the “just right” balance, the study identifies this so-called “Goldilocks size” as crucial for maximizing catalyst efficiency. The study is published in the journal ACS Catalysis and was featured as the cover story.

Led by Professor Kwangjin An from the School of Energy and Chemical Engineering at UNIST, in collaboration with Professor Jeong Woo Han from Seoul National University, the research demonstrates that when Rh exists as a cluster —comprising about 10 atoms—it outperforms both single-atom and nanoparticle forms in reaction speed and activity.

Hydroformylation is a vital industrial process used for producing raw materials for plastics, detergents, and other chemicals. Currently, many Rh catalysts are homogeneous—dissolved in liquids—which complicates separation and recycling. This challenge has driven efforts to develop solid, heterogeneous Rh catalysts that are easier to recover and reuse.

Molecular seal strengthens perovskite solar cells, while pushing efficiency to 26.6%

Perovskite solar cells (PSCs) are known for their impressive ability to convert sunlight into energy, their low production costs and their lightweight design. They may well be the rising stars of renewable energy, but they are not yet as common as traditional solar panels. PSCs are also notoriously fragile and can break when heated during manufacturing.

But these problems could soon be a thing of the past. For their study published in the journal Science, a team from Xi’an Jiaotong University in China has developed a new method that protects the cells from damage during fabrication.

Physicists eye emerging technology for solar cells in outer space

Solar cells face significant challenges when deployed in outer space, where extremes in the environment decrease the efficiency and longevity they enjoy back on Earth. University of Toledo physicists are taking on these challenges at the Wright Center for Photovoltaics Innovation and Commercialization, in line with a large-scale research project supported by the Air Force Research Laboratory.

One recent advancement pertains to an emerging technology that utilizes antimony compounds as light-absorbing semiconductors. A group of UToledo faculty and students recently published a first-of-its-kind assessment exploring the promising characteristics of these antimony chalcogenide-based solar cells for space applications in the journal Solar RRL, which highlighted the work on its front cover.

Antimony chalcogenide solar cells exhibit superior radiation robustness compared to the conventional technologies we’re deploying in space,” said Alisha Adhikari, a doctoral student in physics who co-led the team of undergraduate, graduate and faculty researchers at UToledo. “But they’ll need to become much more efficient before they become a competitive alternative for future space missions.”

/* */