Toggle light / dark theme

Peering inside perovskite: 3D imaging reveals how passivation boosts solar cell efficiency

Perovskite solar cells have garnered widespread attention as a low-cost, high-efficiency alternative to conventional silicon photovoltaics. However, defects in perovskite films impede charge transport, resulting in energy loss and compromised operational stability.

One solution to this problem is “passivation treatment”—a process that adds chemicals such as simple salts or organic molecules to the film. These small molecules or ions latch onto defects in the perovskite material, preventing the defects from interfering with electrical flow. Unfortunately, verifying the internal efficacy of various passivation treatments remains challenging since most characterization techniques only probe the surface or provide averaged macroscopic information.

Now, however, researchers at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) have made an important breakthrough by developing a three-dimensional (3D) electrical imaging technique that directly reveals how defect passivation treatments work in perovskite films. The study was published in Newton on December 31.

On-demand hydrogen fuel production goes dark-mode

Hydrogen, the lightest element on the periodic table, is a master of escaping almost any container it’s stored in. Its extremely small size allows it to squeeze through atomic-scale gaps in the storage materials, which is one of the major issues hindering hydrogen energy from becoming mainstream.

A team of Chinese researchers has solved the issue of containment with on-demand hydrogen production. They developed a simple chemical system containing commercial ammonium metatungstate (W12) and graphitic carbon nitride (g-C3N4) in a liquid suspension. This system captures solar energy and, rather than converting it into electricity, uses it to produce hydrogen fuel on demand—even in darkness.

The new system provided twofold benefits: it made solar energy available even when the sun isn’t shining, and it eliminated the need to transport hydrogen in dangerous, high-pressure tanks.

Glacier loss to accelerate, with up to 4,000 disappearing each year by 2050s

Thousands of glaciers will vanish each year in the coming decades, leaving only a fraction standing by the end of the century unless global warming is curbed, a study showed on Monday.

Government action on climate change could determine whether the world loses 2,000 or 4,000 glaciers annually by the middle of the century, according to the research.

A few degrees could be the difference between preserving almost half of the world’s glaciers in 2100—or fewer than 10%.

New AI-based technology offers real-time electric vehicle state estimation for safer driving

A research team led by Professor Kanghyun Nam from the Department of Robotics and Mechanical Engineering at DGIST has developed a physical AI-based vehicle state estimation technology that accurately estimates the driving state of electric vehicles in real time.

This technology is viewed as a key advancement that can improve the core control performance of electric vehicles and greatly enhance the safety of autonomous vehicles. The work was conducted through international joint research with Shanghai Jiao Tong University in China and the University of Tokyo in Japan.

The work is published in the journal IEEE Transactions on Industrial Electronics.

New dataset maps global city boundaries in high resolution from 2000 to 2022

A research team led by Prof. Liu Liangyun from the Aerospace Information Research Institute of the Chinese Academy of Sciences (AIRCAS) has produced the first comprehensive, high-resolution map of global city and town boundaries, offering a view of how urban boundaries have expanded and transformed over the past two decades. The new dataset—derived from 30-meter-resolution satellite observations—fills a long-standing gap in global urban studies.

Cities and towns are the dominant form of human settlement, playing a crucial role in sustaining ecological balance and advancing sustainable development. However, their complex spatial structures and rapid evolution have made high-resolution global urban boundary datasets scarce. To address this gap, the team integrated the GISD30 global impervious surface dynamic dataset with LandScan global population data to develop the Global City and Town Boundaries (GCTB) Dataset, which covers the period from 2000 to 2022.

Published in Scientific Data, the study details the researchers’ development of a morphology-oriented boundary delineation framework that combines kernel density estimation (KDE) and cellular automata (CA) to accurately map urban boundaries. When compared with multiple reference datasets, the GCTB Dataset showed the strongest agreement with the manually curated Atlas of Urban Expansion, achieving an R2 value of approximately 0.88—indicating high reliability in capturing urban extents.

ARK Robotics Research

Automation and robotics, particularly with the integration of AI, are transforming industries and poised to significantly impact the workforce, but are likely to lead to a reduction in work hours and increased productivity rather than total job destruction.

## Questions to inspire discussion.

Investment & Market Opportunity.

🤖 Q: What is the revenue potential for robotics by 2025? A: ARK Invest projects a $26 trillion global revenue opportunity across household and manufacturing robotics by 2025, driven by convergence of humanoid robots, AI, and computer vision technologies.

💰 Q: How should companies evaluate robot ROI for deployment? A: Robots are worth paying for based on task-specific capabilities delivering 2–10% productivity gains, unlike autonomous vehicles requiring full job performance—Roomba succeeded despite early limitations by being novel and time-saving for specific tasks.

Implementation Strategy.

Magnetic control of lithium enables a safe, explosion-free ‘dream battery’

A new battery technology has been developed that delivers significantly higher energy storage—enough to alleviate EV range concerns—while lowering the risk of thermal runaway and explosion.

A research team at POSTECH has developed a next-generation hybrid anode that uses an external magnetic field to regulate lithium-ion transport, effectively suppressing dendrite growth in high-energy-density electrodes.

A POSTECH research team—led by Professor Won Bae Kim of the Department of Chemical Engineering and the Graduate School of Battery Engineering, together with Dr. Song Kyu Kang and integrated Ph.D. student Minho Kim—has introduced a “magneto-conversion” strategy that applies an external magnetic field to ferromagnetic manganese ferrite conversion-type anodes.

Safe and affordable fast-charging batteries: Multi-layered alkali metal structures open the door to energy of the future

Skoltech scientists conducted a study that advances research on future batteries. Their paper, published in Small, sheds light on recent advances in designing multilayered structures of alkali metals, such as lithium, sodium, and potassium, within carbon anode materials.

This technology has the potential to transform the energy storage market, enabling electric vehicles to charge in minutes and providing green energy with stable, safe, and affordable storage systems.

How multilayered structures improve batteries For years, ions were believed to form only single-atom layers in a battery’s carbon materials, such as graphite. In 2018, researchers used a high-precision electron microscope and discovered a new configuration with ultradense, multiatom layers of lithium forming between two sheets of graphene.

/* */