Toggle light / dark theme

Elon Musk — “In 36 months, the cheapest place to put AI will be space”

How Elon plans to launch a terawatt of GPUs into space.

## Elon Musk plans to launch a massive computing power of 1 terawatt of GPUs into space to advance AI, robotics, and make humanity multi-planetary, while ensuring responsible use and production. ## ## Questions to inspire discussion.

Space-Based AI Infrastructure.

Q: When will space-based data centers become economically superior to Earth-based ones? A: Space data centers will be the most economically compelling option in 30–36 months due to 5x more effective solar power (no batteries needed) and regulatory advantages in scaling compared to Earth.

☀️ Q: How much cheaper is space solar compared to ground solar? A: Space solar is 10x cheaper than ground solar because it requires no batteries and is 5x more effective, while Earth scaling faces tariffs and land/permit issues.

Q: What solar production capacity are SpaceX and Tesla planning? A: SpaceX and Tesla plan to produce 100 GW/year of solar cells for space, manufacturing from raw materials to finished cells in-house.

Biodegradable PCB targets short-lifetime electronics

Researchers at the University of Glasgow have developed an almost entirely biodegradable PCB using zinc conductors and bio-derived substrate materials. The work aims to reduce the environmental impact of electronic waste by replacing conventional copper-based PCBs in applications designed for short operational lifetimes.

For eeNews Europe readers, the research is relevant as it explores alternative PCB materials and manufacturing methods that could be applied to disposable and low-duty-cycle electronics, including sensing and IoT-related devices.

The approach differs from conventional PCB fabrication, which typically involves etching copper from a full sheet. Instead, the researchers use what they describe as a growth and transfer additive manufacturing process, depositing conductive material only where tracks are required. According to the team, this reduces metal usage and avoids the use of harsh chemical etchants.

Physics-driven ML to accelerate the design of layered multicomponent electronic devices

Many advanced electronic devices – such as OLEDs, batteries, solar cells, and transistors – rely on complex multilayer architectures composed of multiple materials. Optimizing device performance, stability, and efficiency requires precise control over layer composition and arrangement, yet experimental exploration of new designs is costly and time-intensive. Although physics-based simulations offer insight into individual materials, they are often impractical for full device architectures due to computational expense and methodological limitations.

Schrödinger has developed a machine learning (ML) framework that enables users to predict key performance metrics of multilayered electronic devices from simple, intuitive descriptions of their architecture and operating conditions. This approach integrates automated ML workflows with physics-based simulations in the Schrödinger Materials Science suite, leveraging physics-based simulation outputs to improve model accuracy and predictive power. This advancement provides a scalable solution for rapidly exploring novel device design spaces – enabling targeted evaluations such as modifying layer composition, adding or removing layers, and adjusting layer dimensions or morphology. Users can efficiently predict device performance and uncover interpretable relationships between functionality, layer architecture, and materials chemistry. While this webinar focuses on single-unit and tandem OLEDs, the approach is readily adaptable to a wide range of electronic devices.

Long-period Jupiter-like exoplanet discovered with TESS

Using NASA’s Transiting Exoplanet Survey Satellite (TESS), an international team of astronomers has discovered a new extrasolar planet transiting a distant star. The newfound alien world, designated TOI-6692 b, is the size of Jupiter and has an orbital period of about 130 days. The discovery was presented in a paper published January 22 on the arXiv pre-print server.

TESS is conducting a survey of about 200,000 bright stars near the sun with the aim of searching for transiting exoplanets. To date, more than 7,800 potential planets (known as TESS Objects of Interest) have been cataloged using this satellite, with 733 of those discoveries officially verified.

Lab-grown algae remove microplastics from water

A University of Missouri researcher is pioneering an innovative solution to remove tiny bits of plastic pollution from our water. Mizzou’s Susie Dai recently applied a revolutionary strain of algae toward capturing and removing harmful microplastics from polluted water. Driven by a mission to improve the world for both wildlife and humans, Dai also aims to repurpose the collected microplastics into safe, bioplastic products such as composite plastic films.

“Microplastics are pollutants found almost everywhere in the environment, such as in ponds, lakes, rivers, wastewater and the fish that we consume,” Dai, a professor in the College of Engineering and principal investigator at the Bond Life Sciences Center, said. “Currently, most wastewater treatment plants can only remove large particles of plastic, but microplastics are so small that they slip through and end up in drinking water, polluting the environment and harming ecosystems.”

The findings are published in the journal Nature Communications.

New study reveals surprising side effects linked to driving electric vehicles: ‘It … has an immediate impact’

Next, the study’s authors will examine whether more ZEVs are associated with fewer asthma-related hospitalizations and emergency room visits.

Their work adds to the extensive research on whether EVs are better for the planet long-term than their gas-powered counterparts. Despite imperfections such as mining, the findings are clear on that front. The USC team is showing that when it comes to the air we breathe and public health, the benefits of EVs are undeniable.

“These findings show that cleaner air isn’t just a theory—it’s already happening in communities across California,” declared Sandrah Eckel, the study’s lead author.

Unlocking defect-free graphene electrodes for transparent electronics

Transparent electrodes transmit light while conducting electricity and are increasingly important in bioelectronic and optoelectronic devices. Their combination of high optical transparency, low electrical resistance, and mechanical flexibility makes them well suited for applications such as displays, solar cells, and wearable or implantable technologies.

In a significant advancement, researchers led by Professor Wonsuk Jung at Chungnam National University in the Republic of Korea have introduced a new fabrication technique called one-step free patterning of graphene, or OFP-G, which enables high-resolution patterning of large-area monolayer graphene with feature sizes smaller than 5 micrometers, without the use of photoresists or chemical etching.

Published Microsystems & Nanoengineering, the method addresses a key limitation of conventional microelectrode fabrication, where lithographic processes often damage graphene and degrade its electrical performance.

/* */