Toggle light / dark theme

As the heyday of the creative economy boom becomes a distant memory, Stephen Armstrong looks at the generation who were once the high-rollers and are now facing an uncertain future as younger workers and AI come for their jobs, just as their children and parents are relying on them more than ever

Advanced carbon fiber materials could be used in applications from wind turbine blades to biomedical implants following the development of a low-cost carbon fiber feedstock.

The carbon fibers were spun from synergistic blends of the low-value heavy oils left over from refining by members of KAUST’s Clean Energy Research Platform. The work could not only facilitate broader carbon fiber uptake but also create sustainable new uses for residual oils as the world transitions to alternative energy systems.

“Crude oil is a resource with immense potential beyond fuels,” says Edwin Guevara Romero, a researcher in the labs of Mani Sarathy, who led the work. “Using oil residues as feedstocks for is an innovative, high-value application of oil-derived resources, paving the way for economic diversification,” he says.

We’re exploring the frontiers of AGI, prioritizing readiness, proactive risk assessment, and collaboration with the wider AI community.

Artificial general intelligence (AGI), AI that’s at least as capable as humans at most cognitive tasks, could be here within the coming years.

Integrated with agentic capabilities, AGI could supercharge AI to understand, reason, plan, and execute actions autonomously. Such technological advancement will provide society with invaluable tools to address critical global challenges, including drug discovery, economic growth and climate change.

Harnessing moisture from air, Northwestern University chemists have developed a simple new method for breaking down plastic waste.

The non-toxic, environmentally friendly, solvent-free process first uses an inexpensive catalyst to break apart the bonds in polyethylene terephthalate (PET), the most common plastic in the polyester family. Then, the researchers merely expose the broken pieces to ambient air. Leveraging the trace amounts of moisture in air, the broken-down PET is converted into monomers—the crucial building blocks for plastics. From there, the researchers envision the monomers could be recycled into new PET products or other, more valuable materials.

Safer, cleaner, cheaper and more sustainable than current plastic recycling methods, the new technique offers a promising path toward creating a circular economy for plastics. The study was recently published in Green Chemistry.

Lithium-ion batteries are part of everyday life. They power small rechargeable devices such as mobile phones and laptops. They enable electric vehicles. And larger versions store excess renewable energy for later use, supporting the clean energy transition.

Australia produces more than 3,000 metric tons of lithium-ion battery a year. Managing this waste is a technical, economic and social challenge. Opportunities exist for and creating a circular economy for batteries. But they come with risk.

That’s because contain manufactured chemicals such as PFAS, or per-and polyfluoroalkyl substances. The chemicals carry the lithium—along with electricity—through the battery. If released into the environment, they can linger for decades and likely longer. This is why they’ve been dubbed “forever chemicals

A new study published in Frontiers in Computer Science investigated if placing smartphones just out of our reach while we’re at work influenced device use for activities not related to work.

“The study shows that putting the smartphone away may not be sufficient to reduce disruption and procrastination, or increase focus,” said the paper’s author Dr. Maxi Heitmayer, a researcher at the London School of Economics. “The problem is not rooted within the device itself, but in the habits and routines that we have developed with our devices.”

Researchers at the Georgia Institute of Technology have developed a new technology to manufacture solar cells.

Solar energy is growing rapidly in the United States. In 2010, it accounted for 0.1% of electrical generation in the country and has increased to over 6% in 2024. By 2029, solar is slated to become the largest source of renewable energy.

Most commercial solar panels are made from silicon. Producing solar panels like this is energy-intensive and can be difficult to do within the United States. For solar to take off more in the United States, we need to find a less expensive, more available material.

Tesla is preparing to launch its robo taxi in June, leveraging its unique autonomy and data advantages to navigate challenges such as new tariffs and production shifts, while positioning itself for significant growth amid declining competitor viability ## Questions to inspire discussion ## Tesla’s Robo Taxi Service.

🚕 Q: When and where is Tesla launching its robo taxi service? A: Tesla’s robo taxi service is set to launch in Austin, Texas in June 2025, with plans for a nationwide rollout in the US later that year.

🏎️ Q: What vehicles will be eligible for Tesla’s robo taxi service? A: The service will be available on all vehicles equipped with Full Self-Driving (FSD) capability, including existing Model 3 and Model Y, not just the upcoming Cybertruck.

💰 Q: How will Tesla’s robo taxi network economics work? A: The economics will be based on cost per mile, factoring in low capital costs of Tesla EVs and low power consumption of their onboard autonomy systems.

📊 Q: What competitive advantage does Tesla have in the robo taxi market? A: Tesla’s existing fleet of billions of miles of deployed vehicles and hundreds of thousands of users provide a massive data advantage for improving and assessing the service. ## Tariffs and Supply Chain.

🏭 Q: What is Tesla’s supply chain strategy? A: Tesla aims to build cars where sold for environmental reasons, which is considered best practice in network design but extremely difficult to implement.

They will make us smarter and more efficient for a time, and will unlock enormous amounts of economic growth, but they are fundamentally labor replacing.


A new era of “free intelligence” powered by AI will change the way humans work, says billionaire Microsoft co-founder Bill Gates.