A team of researchers, led by Raúl Jiménez, an ICREA scientist at the University of Barcelona’s Institute of Cosmos Sciences (ICCUB), and working in partnership with the University of Padua (Italy), has introduced a groundbreaking new theory about how the Universe began.
Published in Physical Review Research, their study offers a major shift in how scientists understand the earliest moments following the Big Bang.
The Big Bang is the leading cosmological model explaining how the universe as we know it began approximately 13.8 billion years ago.
The red supergiant Betelgeuse likely has a companion star, astronomers have confirmed.
Long theorized to share an orbit with Betelgeuse — an extremely bright star that may go supernova in the next few thousand years — a sun-size companion star has finally appeared in unique observations taken with the Gemini North telescope high on Hawaii’s Mauna Kea.
New research into topological phases of matter may spur advances in innovative quantum devices. As described in a new paper published in the journal Nature Communications, a research team including Los Alamos National Laboratory scientists used a novel strain engineering approach to convert the material hafnium pentatelluride (HfTe5) to a strong topological insulator phase, increasing its bulk electrical resistance while lowering it at the surface, a key to unlocking its quantum potential.
“I’m excited that our team was able to show that the elusive and much-sought-after topological surface states can be made to become a predominant electrical conduction pathway,” said Michael Pettes, scientist with the Center for Integrated Nanotechnologies (CINT) at the Laboratory.
“This is promising for the development of types of quantum optoelectronic devices, dark matter detectors and topologically protected devices such as quantum computers. And the methodology we demonstrate is compatible for experimentation on other quantum materials.”
Earth and our entire Milky Way galaxy may sit inside a mysterious giant hole which makes the cosmos expand faster here than in neighbouring regions of the universe, astronomers say.
Their theory is a potential solution to the ‘Hubble tension’ and could help confirm the true age of our universe, which is estimated to be around 13.8 billion years old.
The latest research – shared at the Royal Astronomical Society’s National Astronomy Meeting (NAM) in Durham – shows that sound waves from the early universe, “essentially the sound of the Big Bang”, support this idea.
A team of astronomers from Rhodes University and elsewhere have investigated a sample of 104 quasars detected with the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. The new study, published July 16 on the pre-print server arXiv, could help us advance our knowledge about quasars and their properties.
Quasars, or quasi-stellar objects (QSOs), are among the brightest and most distant objects in the known universe, and serve as fundamental tools for numerous studies in astrophysics as well as cosmology.
In general, they are active galactic nuclei (AGN) of very high luminosity, emitting electromagnetic radiation observable in radio, infrared, visible, ultraviolet and X-ray wavelengths.
Astronomers have discovered a galaxy shaped like an infinity symbol that may contain the first directly observed newborn supermassive black hole. Yale astronomer Pieter van Dokkum and his team have identified a remarkable object in deep space, which they’ve named the “Infinity” galaxy. This struc
Dark matter, a type of matter that does not emit, absorb, or reflect light, is predicted to account for most of the universe’s mass. While theoretical predictions hint at its abundance, detecting this elusive matter has so far proved to be very difficult, leaving its composition and origin a mystery.
One widely explored hypothesis is that dark matter consists of weakly interacting massive particles, or WIMPs for short. These particles are theorized to only interact with ordinary matter via gravity and potentially via weak nuclear forces.
The LUX-ZEPLIN (LZ) experiment is a large-scale research effort aimed at searching for signals associated with the presence of WIMPs using a sophisticated detector known as a dual-phase xenon time projection chamber. The researchers involved in the experiment recently published their most recent findings in a paper in Physical Review Letters, which places more stringent constraints on lighter dark matter particles that could have gained energy after colliding with cosmic rays.
Solar cells and computer chips need silicon layers that are as perfect as possible. Every imperfection in the crystalline structure increases the risk of reduced efficiency or defective switching processes.
If you know how silicon atoms arrange themselves to form a crystal lattice on a thin surface, you gain fundamental insights into controlling crystal growth. To this end, an international research team analyzed the behavior of silicon that was flash-frozen. The study is published in the journal Physical Review Letters.
The results show that the speed of cooling has a major impact on the structure of silicon surfaces. The underlying mechanism may also have occurred during phase transitions in the early universe shortly after the Big Bang.
Betelgeuse is one of the brightest stars in the night sky, and the closest red supergiant to Earth. It has an enormous volume, spanning a radius around 700 times that of the sun. Despite only being ten million years old, which is considered young by astronomy standards, it’s late in its life.
Located in the shoulder of the constellation Orion, people have observed Betelgeuse with the naked eye for millennia, noticing that the star changes in brightness over time. Astronomers established that Betelgeuse has a main period of variability of around 400 days and a more extended secondary period of around six years.
In 2019 and 2020, there was a steep decrease in Betelgeuse’s brightness—an event referred to as the “Great Dimming.” The event led some to believe that a supernova death was quickly approaching, but scientists were able to determine the dimming was actually caused by a large cloud of dust ejected from Betelgeuse.
It took about 50 exploding stars to upend cosmology. Researchers mapped and measured light from Type Ia supernovae, the dramatic explosion of a particular kind of white dwarf. In 1998, they announced their surprising results: Instead of slowing down or staying constant, our universe was expanding faster and faster. The discovery of “dark energy,” the unknown ingredient driving the accelerated expansion, was awarded a Nobel Prize.
Since the late ’90s, dozens of experiments using different telescopes and techniques have captured and published more than 2,000 Type Ia (pronounced “one A”) supernovae. But without correcting for those differences, using supernovae from separate experiments is often a case of comparing apples and oranges.
To unite the supernovae and more precisely measure dark energy’s role in our universe, scientists built the largest standardized dataset of Type Ia supernovae ever made. The compilation is called Union3 and was built by the international Supernova Cosmology Project (SCP), which is led by the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab).