Toggle light / dark theme

Reproduction in space, an environment hostile to human biology

As commercial spaceflight draws ever closer and time spent in space continues to extend, the question of reproductive health beyond the bounds of planet Earth is no longer theoretical but now “urgently practical,” according to a new study published in the journal Reproductive Biomedicine Online.

“More than 50 years ago,” explains clinical embryologist Giles Palmer from the International IVF Initiative Inc, “two scientific breakthroughs reshaped what was thought biologically and physically possible—the first moon landing and the first proof of human fertilization in vitro.

Now, more than half a century later, we argue in this report that these once-separate revolutions are colliding in a practical and underexplored reality: space is becoming a workplace and a destination, while assisted reproductive technologies have become highly advanced, increasingly automated and widely accessible.

A programmable, Lego-like material for robots emulates life’s flexibility

Mechanical engineers at Duke University have demonstrated a proof-of-concept method for programming mechanical properties into solid Lego-like building blocks. By controlling the solidity of hundreds of individual cells in specific patterns, the approach could allow futuristic robotics to alter their mechanical properties and functionalities on the fly.

In their initial tests, the researchers showed how a tail-like 3D beam with various configurations can move a robotic fish through water along different paths with the same motor activity. The team envisions miniaturized versions of the technology that could, for example, maneuver through blood vessels to survey their health or even reconfigure to form an adaptive stent.

The research appears in the journal Science Advances.

Enzyme required for transition from monocyte to tissue-resident macrophage identified!

A new study found that an enzyme involved in protein translation is essential for circulating immune cells, called monocytes, to mature into tissue-resident macrophages, a specialized population of immune cells that maintain organ health by clearing dead cells and debris. Without this enzyme, monocytes enter tissues but fail to fully differentiate, leading to impaired tissue maintenance and persistent immune cell infiltration that causes inflammation instead of repair.

The research, published in Nature, showed that deoxyhypusine synthase (DHPS) is required for both the differentiation and long-term survival of macrophages across multiple organs, including the lung, liver, brain, kidney, heart and peritoneal cavity.

Using a series of mouse models, the investigators demonstrated that DHPS controls a core, tissue-agnostic program that enables macrophages to adhere to their local environment, interact with surrounding cells and carry out the essential functions that maintain tissue balance and organ health.

The researchers traced these defects to the polyamine–hypusine pathway. Analyses of gene activity, protein production and protein-making machinery revealed that DHPS is required for efficient translation of a subset of genes involved in cell adhesion (the ability to stick to their surroundings and to other cells so they can stay in the correct place and function properly), signaling, and tissue interaction. Without DHPS, macrophages failed to express key proteins needed to anchor themselves within tissues and respond appropriately to local cues.

Imaging studies showed that DHPS-deficient macrophages had abnormal shape and positioning within tissues, while functional assays demonstrated defects in the clearance of dead cells and tissue maintenance. In the lung, this impairment led to accumulation of surfactant material, a substance in the lungs that keeps air sacs open, and immune cell infiltration, while in the liver, acute macrophage depletion followed by failed restoration resulted in vascular disruption and tissue damage. sciencenewshighlights ScienceMission.

Study Reveals a Turning Point When Men’s Heart Attack Risk Accelerates

Screening at an earlier age can help identify risk factors sooner, enabling preventive strategies that reduce long-term risk.


Screening for heart attack risk should be happening earlier for men, according to a new study that found the risk of cardiovascular disease starts climbing when men are in their mid-30s – significantly earlier than a similar trend is seen in women.

The US-based researchers behind the study followed the health of 5,112 people for an average of around 34 years. As the participants were healthy and aged 18–30 when the study started in the mid-1980s, the researchers could chart cases of cardiovascular disease (including strokes and heart failure) over time.

According to the data, 35 is the critical age when disparities between male and female cardiovascular disease risk start to appear. Most of the difference is driven by coronary heart disease (CHD), the most common cause of heart attacks, where fatty deposits clog up arteries, blocking blood flow.

Newly identified RNA molecule may drive cancer patient survival

In a recent study, researchers at the Texas A&M University Health Science Center (Texas A&M Health) identify a novel RNA molecule that plays a crucial role in preserving the integrity of a key cellular structure, the nucleolus. Their findings also suggest this molecule may influence patient survival in certain blood cancers. The work is published in the Proceedings of the National Academy of Sciences.

Machine learning accelerates plasma mirror design for high-power lasers

Plasma mirrors capable of withstanding the intensity of powerful lasers are being designed through an emerging machine learning framework. Researchers in Physics and Computer Science at the University of Strathclyde have pooled their knowledge of lasers and artificial intelligence to produce a technology that can dramatically reduce the time it takes to design advanced optical components for lasers—and could pave the way for new discoveries in science.

High-power lasers can be used to develop tools for health care, manufacturing and nuclear fusion. However, these are becoming large and expensive due to the size of their optical components, which is currently necessary to keep the laser beam intensity low enough not to damage them. As the peak power of lasers increases, the diameters of mirrors and other optical components will need to rise from approximately one meter to more than 10 meters. These would weigh several tons, making them difficult and expensive to manufacture.

Scientists Identified a New Blood Group After a 50-Year Mystery

It represents a huge achievement, and the culmination of a long team effort.


A pregnant woman’s blood sample taken in 1972 was mysteriously missing a surface molecule found on all other known red blood cells at the time.

More than 50 years later, that strange absence finally led researchers from the UK and Israel to describe a new blood group system in humans. The team published a paper on the discovery in 2024.

“It represents a huge achievement, and the culmination of a long team effort, to finally establish this new blood group system and be able to offer the best care to rare, but important, patients,” hematologist Louise Tilley from the UK National Health Service said in September 2024, after nearly 2 decades of personally researching this bloody quirk.

New method predicts asthma attacks up to five years in advance

“One of the biggest challenges in treating asthma is that we currently have no effective way to tell which patient is going to have a severe attack in the near future,” says the senior author. “Our findings solve a critical unmet need. By measuring the balance between specific sphingolipids and steroids in the blood, we can identify high-risk patients with 90 per cent accuracy, allowing clinicians to intervene before an attack occurs.”

The team discovered that while individual metabolite levels provided some insight, the ratio between sphingolipids and steroids was the most powerful predictor of future health. ScienceMission sciencenewshighlights.


Researchers have identified a new method to predict asthma exacerbations with a high degree of accuracy. The study is published in Nature Communications.

Asthma is one of the world’s most common chronic diseases, affecting over 500 million people. Asthma exacerbations – commonly known as asthma attacks – are a major cause of disease morbidity and healthcare costs. Despite the prevalence of asthma, clinicians currently lack reliable biomarkers to identify which patients are at high risk for future attacks. Current methods often fail to distinguish between stable patients and those prone to severe exacerbations.

The study analysed data from three large asthma cohorts totalling over 2,500 participants, backed by decades of electronic medical records. Researchers used a high throughput approach called metabolomics to measures small molecules in the blood of individuals with asthma. They identified an important relationship between two classes of metabolites, sphingolipids and steroids, and asthma control. Specifically, they identified that sphingolipid to steroid ratios could predict exacerbation risk over a 5-year period. In some cases, the model could differentiate the time-to-first exacerbation between high-and low-risk groups by nearly a full year.

Epistasis study uncovers genetic interactions linked to heart disease

Euan Ashley’s lab explores the intricate interactions of gene variants. Tiny “typos,” or genetic mutations, can sneak into segments of DNA. Many of these are harmless, but some can cause health problems. Two or more genes can team up and change the outcome of a physical or molecular trait. This phenomenon, known as epistasis, occurs through complex interactions between genes that are functionally related—such as those that support protein creation.

Identifying these group dynamics provides crucial clues to how genetic diseases manifest and should be treated. But they’re not easily detected and often fly under the radar.

To help root out these connections, Ashley, MB ChB, DPhil, professor of genetics and of biomedical data science, and a team of scientists, including co-corresponding author Bin Yu, Ph.D., a professor of statistics and of electrical engineering and computer sciences at the University of California, Berkeley, have developed computational techniques to identify and understand the hidden ways epistasis influences inherited diseases.

How can we better invest in people’s prosperity, health, skills and jobs? Davos 2026

‘People’, whether it’s for the benefit they bring to growth or the challenge they pose to the balance sheet, always feature on the Annual Meeting’s agenda.

This year, geopolitics dominated the headlines, but a quieter conversation about the investment in people persisted, reflecting a shared recognition that human well-being and human capital is the key to economic resilience.

/* */