Toggle light / dark theme

Sulfate and carbon in fine air pollution tied to higher depression risk

Long-term exposure to fine particulate matter like PM2.5 components in polluted air can not only cause respiratory diseases, but also increase the risk of depression in older people, especially in those living with preexisting heart, metabolic and neurological conditions.

Depression has caused more loss of healthy life worldwide than any other mental health condition. This disorder has snatched away people’s will to perform the basics of daily activities. An analysis of global health data in 2021 showed that all the years people lived with disability or reduced quality of life because of depression added up to about 56.3 million years.

A recent population-based cohort study collected data from nearly 23.7 million U.S. Medicare beneficiaries aged 65 years and older between 2000 and 2018 to examine specific components of PM2.5 exposure, both individually and in combination, and its associations with the risk of developing depression. Among those tracked, more than 5.5 million developed depression during the follow-up period. These findings are published in JAMA Network Open.

Microplastics Are Leaking Invisible Chemical Clouds Into Rivers and Oceans

Researchers have mapped the molecular changes that unfold as sunlight causes plastics to leach dissolved organic matter, findings that could reshape understanding of ecosystem health, water quality, and global carbon cycling. Scientists have found that microplastics drifting through rivers, lakes

Shrinking materials hold big potential for smart devices, researchers say

Wearable electronics could be more wearable, according to a research team at Penn State. The researchers have developed a scalable, versatile approach to designing and fabricating wireless, internet-enabled electronic systems that can better adapt to 3D surfaces, like the human body or common household items, paving the path for more precise health monitoring or household automation, such as a smart recliner that can monitor and correct poor sitting habits to improve circulation and prevent long-term problems.

The method, detailed in Science Advances, involves printing liquid metal patterns onto heat-shrinkable polymer substrates—otherwise known as the common childhood craft “Shrinky Dinks.” According to team lead Huanyu “Larry” Cheng, James L. Henderson, Jr. Memorial Associate Professor of Engineering Science and Mechanics in the College of Engineering, the potentially low-cost way to create customizable, shape-conforming electronics that can connect to the internet could make the broad applications of such devices more accessible.

“We see significant potential for this approach in biomedical uses or wearable technologies,” Cheng said, noting that the field is projected to reach $186.14 billion by 2030. “However, one significant barrier for the sector is finding a way to manufacture an easy-to-customize device that can be applied to freestanding, freeform surfaces and communicate wirelessly. Our method solves that.”

Cancer Cells Paralyze Immune Cells

Immune cells work to fight infection and other diseases. Different subsets work together to elicit a healthy immune response; however, infections and disease can dysregulate cells and prevent effective immunity. Interestingly, cancer can use immune cells to its advantage.

Cancer employs various mechanisms to alter the immune system. Once established, tumor cells secrete proteins and molecules to generate a favorable environment. In this case, the tumor microenvironment (TME) becomes hypoxic due to a lack of oxygen with increased blood vessel growth to bring nutrients to the tumor and altered cell types that promote tumor progression. Specifically, tumor-secreted molecules polarize healthy immune cells, which allow cancer cells to proliferate and travel to distal tissues of the body.

T cells are specific immune cells responsible for identifying and targeting pathogens. Receptors on T cells recognize proteins on the surface of infected cells, which stimulate an immune response that eliminates the disease. These cells are critical for effective health and many immunotherapies aim to amplify or enhance T cell function. In the context of cancer, these T cells lose their function and, in some cases, promote tumor growth by inhibiting other immune cells. Unfortunately, treatment efficacy is limited to specific subsets of patients due to tumor type and stage of disease. Scientists are currently working to understand more about T cell biology and enhance immunotherapy.

The 2026 Timeline: AGI Arrival, Safety Concerns, Robotaxi Fleets & Hyperscaler Timelines | 221

The 2026 Timeline: AGI Arrival, Safety Concerns, Robotaxi Fleets & Hyperscaler Timelines ## The rapid advancement of AI and related technologies is expected to bring about a transformative turning point in human history by 2026, making traditional measures of economic growth, such as GDP, obsolete and requiring new metrics to track progress ## ## Questions to inspire discussion.

Measuring and Defining AGI

🤖 Q: How should we rigorously define and measure AGI capabilities? A: Use benchmarks to quantify specific capabilities rather than debating terminology, enabling clear communication about what AGI can actually do across multiple domains like marine biology, accounting, and art simultaneously.

🧠 Q: What makes AGI fundamentally different from human intelligence? A: AGI represents a complementary, orthogonal form of intelligence to human intelligence, not replicative, with potential to find cross-domain insights by combining expertise across fields humans typically can’t master simultaneously.

📊 Q: How can we measure AI self-awareness and moral status? A: Apply personhood benchmarks that quantify AI models’ self-awareness and requirements for moral treatment, with Opus 4.5 currently being state-of-the-art on these metrics for rigorous comparison across models.

AI Capabilities and Risks.

New toothpaste stops periodontal pathogens

Periodontitis is widespread and can have serious consequences for overall health. Researchers at Fraunhofer have identified a substance that selectively inhibits only those bacteria that cause periodontitis, thereby preserving the natural balance of the oral microbiome. This technology has been further developed and commercialized as a range of oral care products by the spin-off company PerioTrap.

The oral microbiome is home to more than 700 different bacterial species, of which only a few can cause periodontitis. These adhere to dental plaque, particularly along the gum line, where they trigger inflammation (gingivitis). This can potentially lead to chronic periodontitis, which does more than just cause receding gums and loose teeth. If these bacteria enter the bloodstream, they can also contribute to the development of diabetes, rheumatic disease, arthritis, cardiovascular disease, chronic inflammatory bowel disease and even Alzheimer’s disease.

Pathogenic bacteria are killed by conventional oral care products such as alcohol-based mouthwashes and products containing the antiseptic chlorhexidine, but these also eliminate beneficial microorganisms. When the oral microbiome re-establishes itself after treatment, pathogenic bacteria such as Porphyromonas gingivalis gain an early advantage because they proliferate particularly well in inflamed gum tissue. Beneficial bacteria grow more slowly, and the oral microbiome quickly shifts back from its natural balance into dysbiosis, allowing the disease to recur.

Stem cell engineering breakthrough paves way for next-generation living drugs

For the first time, researchers at UBC have demonstrated how to reliably produce an important type of human immune cell — known as helper T cells — from stem cells in a controlled laboratory setting. The findings, published today in Cell Stem Cell, overcome a major hurdle that has limited the development, affordability and large-scale manufacturing of cell therapies. The discovery could pave the way for more accessible and effective off-the-shelf treatments for a wide range of conditions like cancer, infectious diseases, autoimmune disorders and more.

“This is a major step forward in our ability to develop scalable and affordable immune cell therapies.”

Dr. Peter Zandstra


Ranked among the world’s top medical schools with the fifth-largest MD enrollment in North America, the UBC Faculty of Medicine is a leader in both the science and the practice of medicine. Across British Columbia, more than 12,000 faculty and staff are training the next generation of doctors and health care professionals, making remarkable discoveries, and helping to create the pathways to better health for our communities at home and around the world.

/* */