Toggle light / dark theme

Mitochondrial specialization and signaling shape neuronal function

How neuronal function is shaped by mitochondria.

Despite the established links between mitochondrial dysfunction and neuronal disorders, the specialization of mitochondria to support the specific demands of neurons has been less extensively explored.

Proper mitochondrial positioning influences an array of neuronal functions and processes, from neurodevelopment through synaptic transmission, due to the participation of mitochondria as local ATP suppliers, Ca2+ sinks, and sites of neurotransmitter synthesis.

In neurons, mitochondria are also crucial for local translation in axons and dendrites, to which they provide both local ATP and mRNA transport. In this way, mitochondria emerge as centers for neuronal plasticity sciencenewshighlights ScienceMission https://sciencemission.com/Mitochondrial-specialization


Neurons are specialized cells designed to process information and transmit it, often across long distances. In many neurons, the axonal volume far exceeds the somato-dendritic volume, creating a need for long-range transport and local polarization mechanisms. In addition, action potential firing and restoration of ionic gradients, as well as dynamic changes in synaptic plasticity, further increase the energetic demands of neurons. In this review, we highlight the roles mitochondria play in vertebrate neuronal biology and how mitochondrial functionality is tuned to support the unique demands of neurons. We cover the influence of mitochondrial positioning, ATP generation and Ca2+ buffering on neuronal function, and explore the role of mitochondria in neurotransmitter metabolism and local protein translation.

Simple patch can make medications safer and more effective

Vancomycin is the antibiotic doctors reach for when almost nothing else will work. It’s used in hospitals for serious drug-resistant infections, or for when an infection is spreading through the patient’s bloodstream, but it’s also notoriously tricky to dose: too little and it won’t knock out the infection, too much and the patient risks kidney damage or even death. Up to 40% of patients receiving vancomycin develop an acute kidney injury.

Right now, dosage levels are monitored by repeated blood tests, an invasive and time-consuming process that can’t always give clinicians the data they need in time. Hoping to solve this issue, UNSW and international researchers working alongside Australian diagnostics company Nutromics developed a minimally invasive patch that tracks the antibiotic in patients every five minutes.

The team has published the results of a clinical trial in Nature Biotechnology, and say its success demonstrates that the major scientific and safety challenges have been solved.

Molecular imaging of immune and fibrosis targets to guide therapy for repair after myocardial infarction

In this Review, Bengel and colleagues propose a roadmap for the clinical implementation of radiotracer-based molecular imaging of immune and fibrotic pathways to guide targeted therapies for heart repair after myocardial infarction.

Enhanced Selenium Supplement Extends Lifespan and Delays Multi‐Organs Aging by Regulating the Sik1 Pathway Through Maintaining Calcium Homeostasis

In healthy aging strategies, nutritional supplements synergize with optimized dietary and lifestyle interventions by modulating aging-related molecular pathways.[ 8, 9 ] Notably, NMN exerts multi-organ anti-aging effects by elevating NAD+ levels to activate the SIRT1 pathway, thereby significantly enhancing mitochondrial function while reducing oxidative stress and DNA damage.[ 10 ] Similarly, curcumin delays aging and related diseases through pleiotropic mechanisms involving oxidative stress regulation, anti-inflammatory actions, telomere maintenance, and sirtuin protein modulation.[ 11 ] However, practical applications face significant challenges: bioactive compounds like resveratrol and curcumin suffer from limited bioavailability due to poor aqueous solubility and first-pass metabolism, while excessive supplementation of antioxidants such as vitamins C/E may disrupt reactive oxygen species (ROS) signaling homeostasis, potentially inducing cellular toxicity or even increasing hemorrhagic risk.[ 12-14 ] Future development of anti-aging supplements should focus on: 1) innovative formulation strategies to enhance bioavailability; 2) optimized dosing regimens to minimize toxicity; and 3) long-term clinical studies to validate efficacy.

Selenium, an essential trace element with diverse biological activities, plays a critical role in healthy aging.[ 15-17 ] ≈1 billion people worldwide are affected by selenium deficiency, which is closely linked to neurological disorders, cardiovascular abnormalities, malignancies, and immune dysfunction.[ 18-20 ] Substantial evidence supports the anti-aging effects of selenium through multiple mechanisms: 1) Selenomethionine (SeMet) effectively suppresses Fe2+/H2O2- or Aβ-induced free radical generation, demonstrating therapeutic potential for Alzheimer’s disease characterized by oxidative stress;[ 21 ] 2) Selenium supplementation elevates serum GPx3 levels, a selenoprotein predominantly localized in the basement membrane of renal proximal tubules, modulating mitochondrial quality control pathways to mitigate heavy metal-induced renal aging;[ 22 ] and 3) Our recent findings reveal that selenium supplementation significantly attenuates age-related muscle atrophy by preserving redox homeostasis and regulating muscle protein metabolism.[ 23 ] Recent clinical trials in patients with advanced non-small cell lung cancer (NSCLC) demonstrated that oral administration of selenium nanoparticles (SeNPs) as a dietary supplement (200 µg day−1) in combination with Bev+AP chemotherapy significantly enhanced therapeutic outcomes compared to chemotherapy alone. The SeNPs combination group showed remarkable tumor regression, with progression disease rates decreasing dramatically from 50% to 0% and partial response rates increasing to 83.3%, along with significantly improved objective response rate and disease control rate.[ 24 ] Importantly, this regimen maintained excellent safety profiles without triggering fluctuations in pro-inflammatory or immunosuppressive cytokines. These compelling findings not only establish SeNPs as a safe and effective adjuvant therapy for advanced NSCLC but also provide valuable clinical translation data for nano-selenium formulations in oncology. Despite selenium’s proven benefits in reducing oxidative damage, maintaining genomic stability, and delaying telomere shortening, its narrow therapeutic window, limited bioavailability, and specific mechanisms in multi-organ protection during natural aging require further investigation.

Nanodelivery carriers have emerged as a next-generation platform for gene and drug delivery, offering tunable physicochemical properties such as size, composition, and surface modifications.[ 25 ] Our team has developed organically-bridged mesoporous silica nanoparticles (MSNs) by incorporating functional diselenide bonds into the silica framework at the molecular level, addressing the critical challenge of poor biodegradability in conventional silica materials.[ 26 ] This nanocarrier exhibits unique dual redox-responsive properties, allowing for more precise maintenance of redox homeostasis compared to traditional antioxidants, aligning with the core goal of preserving organismal homeostasis in anti-aging research. Building on this breakthrough, a comprehensive research framework was established: first, this study constructed a natural aging mouse model with MSNs, disulfide-bridged MSNs (SMSNs), commercially available SeMet as controls and then compared the effects of diselenide-bridged MSNs (SeMSNs) on lifespan extension, frailty delay, and multi-organ anti-aging. Next, key pathways and targets were identified through multi-organ transcriptome sequencing, followed by in-depth mechanistic studies. Finally, clinical translation was integrated by analyzing the correlation between serum selenium levels and aging biomarkers in the elderly, and validating the clinical effects of SeMSNs using primary adipose precursor cells (APCs) models. This systematic approach provides a solid theoretical foundation and clinical evidence for the application of nano-selenium in anti-aging research.

The Wnt–NAD+ axis in cancer, aging, and tissue regeneration

Wnt–NAD+ axis in stem cell function.

The Wnt–NAD+ axis is a fundamental regulatory hub in which metabolic state meets developmental signaling and it acts as a metabolic sensor that coordinates tissue regeneration with cellular energy status through compartment specific NAD+ pools.

Wnt signaling regulates NAD+ metabolism by controlling the expression of key biosynthetic enzymes and NAD+ consumers, while NAD+-dependent proteins modulate Wnt activity through direct interactions and epigenetic modifications.

Sirtuins exhibit tissue-specific and subcellular compartment-dependent roles in Wnt regulation where they function as activators or suppressors depending on the cellular bioenergetic state.

The Wnt–NAD+ axis maintains stem cell function and self-renewal capacity through metabolic/signaling integration, and its disruption during aging leads to declining regenerative capacity.

The progressive dysregulation of compartment-specific Wnt–NAD+ coordination contributes to stem cell exhaustion and multiple pathological conditions, indicating that therapeutic strategies must consider tissue-specific and subcellular targeting. sciencenewshighlights ScienceMission https://sciencemission.com/Wnt%E2%80%93NAD-axis


Predicting Return Home After Moderate-to-Severe Traumatic Brain Injury

Background and ObjectivesDays alive and at home (DAH) is a validated outcome measure that captures health care transitions between time spent at home vs various nonhome care settings, offering a more nuanced patient-centered understanding of recovery. We…

MIT’s new brain tool could finally explain consciousness

Although the technology has been around for several years, it has not yet become a standard tool in neuroscience research. Now, two researchers at MIT are preparing new experiments using the technique and have published a paper that serves as a detailed guide, or “roadmap,” for applying it to the study of consciousness.

“Transcranial focused ultrasound will let you stimulate different parts of the brain in healthy subjects, in ways you just couldn’t before,” says Daniel Freeman, an MIT researcher and co-author of the paper. “This is a tool that’s not just useful for medicine or even basic science, but could also help address the hard problem of consciousness. It can probe where in the brain are the neural circuits that generate a sense of pain, a sense of vision, or even something as complex as human thought.”

Unlike other brain stimulation methods, transcranial focused ultrasound does not require surgery. It can reach deeper areas of the brain with greater precision than techniques such as transcranial magnetic or electrical stimulation.

The layer 6b theory of attention

(A) Neuromodulatory projections of the ascending arousal system project divergent axons across the cortex, including to L6b, providing state-dependent signals. Likewise, higher-order cortical axons project to multiple cortical regions, including L6b, providing top-down volitional signals. L6b integrates the convergent input from these two pathways and directs its output to CTC loops with fast and focused activation.

(B) L6b is depolarized by arousal-promoting neuromodulators (left), and we hypothesize that the addition of higher-order cortical feedback strongly activates L6b (right). Thus, the role of neuromodulation is to bring L6b close to the activation threshold across the cortex so that specific L6b circuits can be more easily recruited by specific top-down cortical input. ACh, acetylcholine; 5HT, serotonin; DA, dopamine; NA, noradrenaline; HIS, histamine.

Immune gene diversity and STING1 variants in shaping cancer immunity across different genetic ancestry populations

Hu et al. analyzed non-synonymous SNPs across diverse human populations and revealed divergent evolutionary pressures on immune-and cancer-related genes. By integrating population diversity with functional evaluation, they identified STING1 variants as modulators of interferon signaling. Their findings suggest that germline variations shaped by genetic ancestry may influence cancer immunity.

/* */