Toggle light / dark theme

Caltech’s New Smart Pill Can Read Your Gut Like Never Before

Researchers are gaining a deeper appreciation for the critical role the gastrointestinal (GI) tract plays in maintaining overall health. Beyond its primary responsibilities in digestion, the GI system contributes to the production of hormones, immune cells, and neurotransmitters that influence brain function and emotional well-being.

Because of this, the GI tract contains a wide array of biomarkers that are valuable for diagnosing, tracking, and managing disease—from short-chain fatty acids associated with metabolic syndrome to cytokines linked to inflammation.

However, current technologies fall short when it comes to capturing this biochemical information directly from the GI tract. Existing methods, such as fecal sampling and tissue biopsies, are often invasive, costly, and unable to deliver continuous or comprehensive real-time data throughout the length of the digestive system.

Abstract: Synaptic plasticity is obstructed by pathogenic tau in the brain

Representing a key mechanism that underlies memory loss in Alzheimer’s disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.


1Buck Institute for Research on Aging, Novato, California, USA.

2Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA.

3Gladstone Institutes, San Francisco, Califoria, USA.

4Weill Institute for Neurosciences, Department of Pathology, University of California San Francisco, San Francisco, California, USA.

MIT engineers develop electrochemical sensors for cheap, disposable diagnostics

Using an inexpensive electrode coated with DNA, MIT researchers have designed disposable diagnostics that could be adapted to detect a variety of diseases, including cancer or infectious diseases such as influenza and HIV.

These electrochemical sensors make use of a DNA-chopping enzyme found in the CRISPR gene-editing system. When a target such as a cancerous gene is detected by the enzyme, it begins shearing DNA from the electrode nonspecifically, like a lawnmower cutting grass, altering the electrical signal produced.

One of the main limitations of this type of sensing technology is that the DNA that coats the electrode breaks down quickly, so the sensors can’t be stored for very long and their storage conditions must be tightly controlled, limiting where they can be used. In a new study, MIT researchers stabilized the DNA with a polymer coating, allowing the sensors to be stored for up to two months, even at high temperatures. After storage, the sensors were able to detect a prostate cancer gene that is often used to diagnose the disease.

CTE and normal aging are difficult to distinguish, new study finds

In recent years, some scientists and advocates have warned that playing contact sports like football and hockey may increase the risk of brain diseases like Alzheimer’s disease or chronic traumatic encephalopathy (CTE) due to a buildup of a specific protein in the brain.

But a new Northwestern Medicine study of 174 donated brains, including some from former high school and , pumps the brakes on that theory.

“The long and short of it is no, this protein in this specific brain region is not increased in people who played football at the amateur level. It throws a little bit of cold water on the current CTE narrative,” said corresponding author Dr. Rudolph Castellani, professor of pathology at Northwestern University Feinberg School of Medicine and a Northwestern Medicine neuropathologist.

Scientists create biological artificial intelligence system

Australian scientists, including at the Charles Perkins Centre, University of Sydney, have successfully developed a research system that uses ‘biological artificial intelligence’ to design and evolve molecules with new or improved functions directly in mammal cells. The researchers said this system provides a powerful new tool that will help scientists develop more specific and effective research tools or gene therapies.

Named PROTEUS (PROTein Evolution Using Selection) the system harnesses ‘directed evolution’, a lab technique that mimics the natural power of evolution. However, rather than taking years or decades, this method accelerates cycles of evolution and natural selection, allowing them to create molecules with new functions in weeks.

This could have a direct impact on finding new, more effective medicines. For example, this system can be applied to improve gene editing technology like CRISPR to improve its effectiveness.

Cutting to the core of how 3D structure shapes gene activity

In biology textbooks and beyond, the human genome and DNA therein typically are taught in only one dimension. While it can be helpful for learners to begin with the linear presentation of how stretches of DNA form genes, this oversimplification undersells the significance of the genome’s 3D structure.

To fit in the nucleus of our cells, six feet of DNA is wound up like thread on protein spools called histones. In its packaged form called chromatin, coiled up DNA features many loops and clumps. While it may look random and messy to the untrained eye, these tumbleweed-like shapes bring certain genomic regions into close contact while sheltering others.

Problems with this 3D structure are associated with many diseases including developmental disorders and cancer. Almost 12% of in have incurred issues with their , while other structural issues are known to cause T-cell acute lymphoblastic leukemia.

Antibody mapping chip speeds up vaccine research by revealing hidden binding sites quickly

A new microchip invented by Scripps Research scientists can reveal how a person’s antibodies interact with viruses—using just a drop of blood. The technology offers researchers faster, clearer insights that could help accelerate vaccine development and antibody discovery.

“This lets us take a quick snapshot of antibodies as they are evolving after a vaccine or pathogen exposure,” says Andrew Ward, professor in the Department of Integrative Structural and Computational Biology at Scripps Research and senior author of the new paper published in Nature Biomedical Engineering on June 3, 2025. “We’ve never been able to do that on this timescale or with such tiny amounts of blood before.”

When someone is infected with a virus, or receives a vaccine, their creates new antibodies to recognize the foreign invader. Some antibodies work well against the pathogen, while others attach to it only weakly. Figuring out exactly which parts of the virus the best antibodies stick to is key information for scientists trying to optimize vaccines, since they want to design vaccines that elicit strong, reliable immune responses.

Key brain protein may hold answers for memory loss and neurodegenerative diseases

Scientists have discovered how a key protein helps maintain strong connections between brain cells that are crucial for learning and memory.

Results of the study, published in the journal Science Advances, could point the way to new treatments for traumatic brain injuries and diseases, such as Parkinson’s and Alzheimer’s, the scientists said.

Their research, led by a Rutgers University-New Brunswick professor, uncovered a previously unknown role for cypin, a . Members of the research team found that cypin promotes the presence of tags on specific proteins at synapses, namely the tiny gaps where the , known as neurons, communicate. The marking helps ensure that the right proteins are in the right place, allowing the synapses to work properly.

Camel tears might hold the secret to fighting 26 snake venoms; here’s what researchers found

Deep within the arid and rugged terrains of Rajasthan roams a remarkable creature—the camel, often referred to as the “ship of the desert.” Known for their endurance, unique gait, and ability to survive extreme conditions, camels have long fascinated both scientists and locals alike.

Over time, they’ve been subjects of various studies that revealed surprising abilities, from surviving on sparse resources to even consuming snakes as part of traditional practices. Scientists are now exploring camel tears for rare enzymes and medicinal compounds that could revolutionise treatments for infections, inflammation, and eye diseases. But now, a new claim places camel tears in the spotlight for their potential medical value.

According to a study reportedly conducted by the Central Veterinary Research Laboratory in Dubai, camel tears may have the extraordinary ability to neutralise venom from up to 26 snake species. If validated, this could mark a significant turning point in snakebite treatment, especially in countries like India, where venomous snakebites are a major public health challenge. Though the findings have yet to be peer-reviewed or widely published, the potential has generated global attention for its revolutionary implications in antivenom research.


Camel tears may neutralise venom from 26 snake species. A Dubai lab study suggests this. It could help snakebite treatment, especially in India. Camel tears have bioactive compounds. These may neutralise snake venom toxins. This could lead to affordable snakebite drugs. Camel tears also fight desert infections. They contain proteins and lysozyme. This discovery may help toxicology and medicine.