Toggle light / dark theme

A common biomarker of schizophrenia and bipolar disorder revealed

For decades, schizophrenia and bipolar disorder (BD) were treated as distinct and unrelated psychiatric disorders. Schizophrenia is a psychiatric disorder characterized by altered thinking and emotional patterns, hallucinations, false or irrational beliefs (i.e., delusions), cognitive deficits, and disorganized speech. BD, on the other hand, is marked by extreme mood swings, ranging between periods of high-energy (i.e., mania or hypomania) and depressive episodes.

While the symptoms of schizophrenia and BD are markedly different, many patients diagnosed with either of these conditions experience psychosis at least once in their lifetime. Psychosis is a mental state that causes people to lose touch with reality, experiencing hallucinations, delusions, disorganized speech, and irrational thinking patterns.

More recently, studies found that patients diagnosed with schizophrenia and BD sometimes share other overlapping symptoms, as well as common patterns in their genes and brain organization. This inspired the idea that these disorders are part of a shared psychosis spectrum, which would explain their common features and characteristics.

The ageing immune system as a driver of systemic ageing

Ageing of the immune system is now realized to drive systemic ageing, and there is interest in targeting immune ageing in order to promote healthy ageing. Here, the authors detail how ageing affects different immune cell populations and discuss strategies to rejuvenate the immune system in order to extend healthspan.

New sound-based 3D-printing method enables finer, faster microdevices

Concordia researchers have developed a new 3D-printing technique that uses sound waves to directly print tiny structures onto soft polymers like silicone with far greater precision than before. The approach, called proximal sound printing, opens new possibilities for manufacturing microscale devices used in health care, environmental monitoring and advanced sensors. It is described in the journal Microsystems & Nanoengineering.

The technique relies on focused ultrasound to trigger chemical reactions that solidify liquid polymers exactly where printing is needed. Unlike conventional methods that rely on heat or light, sound-based 3D-printing works with key materials used in microfluidic devices, lab-on-a-chip systems and soft electronics that are hard to print at small scales.

This work builds on the research team’s earlier breakthrough in direct sound printing, which first showed that ultrasound could be used to cure polymers on demand. While that earlier method demonstrated the concept, it struggled with limited resolution and consistency. The new proximal approach places the sound source much closer to the printing surface, allowing far tighter control.

Why Mucus and Phlegm Matter in Health and Disease

It’s mucus season—the time of year this sticky goo makes an appearance in the form of runny noses and phlegmy coughs. While most people are only aware of mucus when they are sick, their organs are blanketed with the stuff year-round. And, when it comes to the microbes living in our bodies, mucus is incredibly important. It provides a spatial and nutritional niche for diverse organisms to thrive, while also preventing them from getting too close to host tissues. Mucus also regulates microbial growth, metabolism and virulence, ultimately controlling the composition of microbial communities throughout the body. As such, scientists are looking at how to exploit mucus-microbe interactions to foster human health.

Mucus is found in creatures spanning the tree of life, from corals to people. In humans and other mammals, the slick goop coats epithelial tissues, including those in the mouth, lungs, gut and urogenital tract. In these regions, mucus protects cells from physical and enzymatic stress, heals wounds and selectively filters particles that can pass through to underlying tissues.

Dimerization-dependent gel-like condensation with dsDNA underpins the activation of human cGAS

CGAS forms condensates on cytosolic double-stranded (ds)DNA and initiates inflammatory responses. Lueck et al. find that, although cGAS forms condensates on various nucleic acids, it enters a hydrogel-like state only with dsDNA via dimerization. The gel-like cGAS condensate not only protects bound dsDNA from exonucleases but also facilitates catalysis.

Parkinson’s disease triggers a hidden shift in how the body produces energy

Weight loss is a well-recognized but poorly understood non-motor feature of Parkinson’s disease (PD). Many patients progressively lose weight as the disease advances, often alongside worsening motor symptoms and quality of life. Until now, it was unclear whether this reflected muscle loss, poor nutrition, or deeper metabolic changes. New research shows that PD-related weight loss is driven mainly by a selective loss of body fat, while muscle mass is largely preserved, and is accompanied by a fundamental shift in how the body produces energy.

Although PD is classically viewed as a neurological disorder, increasing evidence points to widespread metabolic dysfunction. Patients often experience fatigue and nutritional decline, yet dietary advice has largely focused on boosting calories. The new findings challenge this conventional view, showing that weight loss in PD reflects a failure of the body’s standard energy-producing pathways rather than reduced food intake alone. The findings are published in the Journal of Neurology, Neurosurgery & Psychiatry.

The study was led by Professor Hirohisa Watanabe from the Department of Neurology at Fujita Health University, School of Medicine, Japan, along with Dr. Atsuhiro Higashi and Dr. Yasuaki Mizutani from Fujita Health University. The team aimed to clarify what exactly is lost when patients with PD lose weight and why the body is forced to change its energy strategy.

Antibody modulation of B cell responses—Incorporating positive and negative feedback

Antibodies modulate ongoing and future B cell responses. Cyster and Wilson review the various mechanisms whereby antibody feedback shapes B cell responses and present a framework for conceptualizing the ways antigen-specific antibody may influence immunity in conditions as diverse as infectious disease, autoimmunity, and cancer.

/* */