Toggle light / dark theme

A protein ‘tape recorder’ enables scientists to measure and decode cellular processes at scale and over time

Unraveling the mysteries of how biological organisms function begins with understanding the molecular interactions within and across large cell populations. A revolutionary new tool, developed at the University of Michigan, acts as a sort of tape recorder produced and maintained by the cell itself, enabling scientists to rewind back in time and view interactions on a large scale and over long periods of time.

Developed in the lab of Changyang Linghu, Ph.D., Assistant Professor of Cell and Developmental Biology and Biomedical Engineering and Principal Investigator in Michigan Neuroscience Institute, the so-called CytoTape is a flexible, thread-like intracellular protein fiber, designed with the help of AI to act as a tape recorder for large-scale measurement of cellular activities.

The research appears in the journal Nature.

Mapping cell development with mathematics-informed machine learning

The development of humans and other animals unfolds gradually over time, with cells taking on specific roles and functions via a process called cell fate determination. The fate of individual cells, or in other words, what type of cells they will become, is influenced both by predictable biological signals and random physiological fluctuations.

Over the past decades, medical researchers and neuroscientists have been able to study these processes in greater depth, using a technique known as single-cell RNA sequencing (scRNA-seq). This is an experimental tool that can be used to measure the gene activity of individual cells.

To better understand how cells develop over time, researchers also rely on mathematical models. One of these models, dubbed the drift-diffusion equation, describes the evolution of systems as the combination of predictable changes (i.e., drift) and randomness (i.e., diffusion).

Mighty microscopic fibers are the key to cell division and life itself

Every second, millions of cells in your body divide in two. In the space of an hour, they duplicate their DNA and grow a web of protein fibers around it called a spindle. The spindle extends its many fibers from the chromosomes in the center to the edges of the cell. Then, with extraordinary force, it pulls the chromosomes apart.

How the spindle accomplishes this without destroying itself has long been a mystery.

Now, scientists at UC San Francisco have discovered that the spindle can repair itself as it’s pulling on the DNA, replacing weak links while it’s working. This constant reinforcement ensures that the DNA is divided exactly in two. Putting just one extra chromosome in a cell could lead to cancer or birth defects.

Microgravity rewires microbial metabolism, limiting space-based manufacturing efficiency

Scientists at the U.S. Naval Research Laboratory (NRL) have completed a spaceflight biology investigation aboard the International Space Station (ISS) that reveals how microgravity fundamentally alters microbial metabolism, limiting the efficiency of biological manufacturing processes critical to future long-duration space missions. The findings were recently published in the journal npj Microgravity.

The Melanized Microbes for Multiple Uses in Space Project (MELSP), launched to the space station in November 2023, examined how microgravity affects the ability of engineered microbes to produce melanin, a multifunctional biopolymer known for its radiation-shielding, antioxidant, and thermal stable properties.

Results from the completed mission show that while microbes remain capable of producing melanin in space, microgravity significantly interferes with substrate transport, cellular stress responses, and metabolic balance, ultimately reducing production efficiency.

Researchers Discover Intensive Meditation Retreat Rewires the Brain and Blood in Just 7 Days

A one-week mind-body retreat led to consistent changes in the brain and at the molecular level that were associated with greater resilience, reduced pain, and improved recovery from stress. Researchers at the University of California, San Diego report that a short, intensive retreat combining sev

New data-driven 3D chromosome model reveals structural and dynamic features of DNA

Chromosomes are masters of organization. These long strings of DNA fold down into an ensemble of compact structures that keep needed parts of the genome accessible while tucking away those that aren’t used as often. Understanding the complexity of these structures has been challenging; chromosomes are large systems, and deciphering the structure and dynamics requires a combination of experimental data and theoretical approaches. The FI-Chrom method, shared in a recent PNAS publication by Rice’s José Onuchic and Vinícius Contessoto, is a new and effective approach for creating 3D maps of chromosomes from real-world data.

FI-Chrom uses data from chromosome Hi-C maps. These maps break out the chromosome into units of length called beads — about 500,000 linear DNA bases each — and show how frequently each bead is close to other beads. This information shows only probabilities of any two beads being neighbors and no direct three-dimensional information. Imagine it as a logic puzzle where the rules, or parameters, read something like this: Bead A is 99% likely to be close to Bead B, 36% likely to be close to Bead C and 62% likely to be close to Bead D. A 3D model, the researchers knew, could be built by placing every bead in a space that didn’t violate any of the Hi-C map’s parameters. The only problem is that in Hi-C maps, there are hundreds of thousands of beads and tens of millions of mapped interactions showing bead closeness.

“We had chromosome maps that gave us, theoretically, 3D information, but we were really reading them in 2D space,” explains Onuchic, the Harry C. and Olga K. Wiess Chair of Physics and a corresponding author of the study. “Now, we have created FI-Chrom, an open-access program that can turn these Hi-C maps into 3D models of chromosomes.”

A targeted protein degrader that doubles as a cancer vaccine

Cells routinely present peptide fragments from their proteome for immune surveillance, using major histocompatibility complex (MHC) proteins as a display window. In this study, researchers introduced viral peptides to be processed and displayed on cancer cells.


One molecule combines two approaches to waken dormant immunity against tumors by .

/* */