Toggle light / dark theme

A unified framework combining linear and 3D molecular features for robust drug-protein interaction prediction

Robust drug-protein interaction prediction tool.

The researchers develop PointDPI to predict drug-protein interactions (DPIs) by integrating linear and 3D molecular structures.

PointDPI preserves intermolecular relationships and predicts key regulatory sites, outperforming several state-of-the-art methods.

Four predicted drug-protein interactions (DPIs) are experimentally validated at both mRNA and protein levels, highlighting the therapeutic potential of adenosine in inflammatory diseases, ondansetron and etodolac in neurological diseases, and neuroprotective action for dopamine. sciencenewshighlights ScienceMission https://sciencemission.com/rug-protein-interaction


Sun et al. develop PointDPI to predict drug-protein interactions (DPIs) by integrating linear and 3D molecular structures. PointDPI preserves inter-molecular relationships and predicts key regulatory sites, outperforming several state-of-the-art methods.

So gene therapy administered during the operation can extend bypass life

Extending the life of the bypass, the operation that saves the heart when the coronary arteries close, by intervening in the biological behaviour of the implanted vessels. This is the idea behind the first gene therapy administered during a heart bypass. The first patient in the world to receive it was a 73-year-old man in Scotland’s Golden Jubilee University National Hospital.

Bypass allows blood flow to the heart to be restored by bypassing blocked arteries, using vessels taken from other parts of the body to act as a graft, i.e. a ‘bridge’ to the blocked arteries. In most cases, veins taken from the leg (usually the great saphenous vein) are used because they are readily available and simple to implant. In the case of the 73-year-old British man, gene therapy was added to the bypass, which consists of carrying the TIMP-3 gene into the vein before implanting it as a graft. The new gene therapy aims to make the vessel more stable and resistant right from the start by affecting its biological behaviour before it is implanted in the heart. The researchers are thus attempting to overcome one of the main limitations of the bypass procedure: once connected to the heart, the veins have to withstand much higher pressure than they are designed for, which in time leads them to shrink and reduce blood flow, until they lose their function.

Light-based sensor detects early molecular signs of cancer in the blood

Researchers have developed a highly sensitive light-based sensor that can detect extremely low concentrations of cancer biomarkers in the blood. The new technology could one day make it possible to spot early signs of cancer and other conditions using a simple blood test.

Biomarkers such as proteins, DNA or other molecules can be used to reveal the presence, progression or risk of cancer and other diseases. However, one of the main challenges in early disease diagnosis is the extremely low concentration of biomarkers present at the onset.

“Our sensor combines nanostructures made of DNA with quantum dots and CRISPR gene editing technology to detect faint biomarker signals using a light-based approach known as second harmonic generation (SHG),” said research team leader Han Zhang from Shenzhen University in China.

The Frontier Labs War: Opus 4.6, GPT 5.3 Codex, and the SuperBowl Ads Debacle

Questions to inspire discussion AI Model Performance & Capabilities.

🤖 Q: How does Anthropic’s Opus 4.6 compare to GPT-5.2 in performance?

A: Opus 4.6 outperforms GPT-5.2 by 144 ELO points while handling 1M tokens, and is now in production with recursive self-improvement capabilities that allow it to rewrite its entire tech stack.

🔧 Q: What real-world task demonstrates Opus 4.6’s agent swarm capabilities?

A: An agent swarm created a C compiler in Rust for multiple architectures in weeks for **$20K, a task that would take humans decades, demonstrating AI’s ability to collapse timelines and costs.

🐛 Q: How effective is Opus 4.6 at finding security vulnerabilities?

Scientists discover new gatekeeper cell in the brain

VIB and Ghent University researchers have identified and characterized a previously unknown cellular barrier in the brain, which sheds new light on how the brain is protected from the rest of the body. In a study published in Nature Neuroscience, the scientists also reveal a new pathway by which the immune system can impact the brain.

Prof. Roosmarijn Vandenbroucke (VIB–UGent Center for Inflammation Research), said, “These findings reveal how vulnerable and protectable the brain is, opening new perspectives for more targeted interventions in brain disorders.”

The brain is protected from the rest of the body by multiple barriers that maintain a stable, tightly regulated environment and defend it against harmful substances and pathogens. The most well-known of these barriers is the blood-brain barrier, but another critical interface is the choroid plexus, a small structure found within the brain’s fluid-filled spaces, which produces cerebrospinal fluid.

New 3D printing ink uses 70% lignin and recycles with water

Additive manufacturing (AM) methods, such as 3D printing, enable the realization of objects with different geometric properties, by adding materials layer-by-layer to physically replicate a digital model. These methods are now widely used to rapidly create product prototypes, as well as components for vehicles, consumer goods and medical technologies.

A particularly effective AM technique, called direct ink writing (DIW), entails the 3D printing of objects at room temperature using inks with various formulations. Most of these inks are based on fossil-derived polymers, materials that are neither recyclable nor biodegradable. Recently introduced lignin-derived inks could be a more sustainable alternative. However, they typically need to be treated at high heat or undergo permanent chemical bonding processes to reliably support 3D printing. This prevents them from being re-utilized after objects are printed, limiting their sustainability.

Activated CD38+ mast cells promote gastric cancer progression by suppressing CD8+ T cell cytotoxic activity through adenosine metabolism

Zhao et al. delineate the dynamic evolution of the gastric mucosal microenvironment and characterize diverse immune cell populations during gastric cancer progression under H. pylori infection. They identify and validate that H. pylori-associated activated mast cells promote gastric cancer through PGE2-and adenosine-mediated suppression of CD8+ T cell cytotoxicity.

Aging brains pile up damaged synaptic proteins in microglia

It is increasingly clear, though, that the loss of synapses—the flexible and adaptive relay stations central to our brains’ ability to think, learn, and remember—is central to the rise of cognitive decline and dementia in old age.

Now, researchers have discovered clues that may tie synapse loss to another hallmark of brain aging: the declining ability of brain cells to break down and recycle damaged proteins.

Published in Nature, the study shows that synaptic proteins are particularly susceptible to this age-related garbage-disposal problem: In old age, synaptic proteins break down much more slowly, they become more likely to pile up into the tangled clumps of protein characteristic of neurodegenerative disease, and they are more likely to make their way into microglia, immune cells that prune away damaged synapses.

Those findings are the latest in a series of discoveries that suggest new links between the brain’s waste management systems, microglia, and neurodegeneration—and they could yield new insights into human brain aging and neurodegeneration, said the study’s lead author. ScienceMission sciencenewshighlights.

A glaucoma drug may help prevent opioid relapse

An existing drug currently used to treat glaucoma, altitude sickness, and seizures may also have the potential to prevent relapse in opioid use disorder, according to a study by researchers at University of Iowa Health Care. The work is published in the journal Neuropsychopharmacology.

The UI researchers led by John Wemmie, MD, Ph.D., focused on the drug known as acetazolamide (AZD) because it blocks the activity of a brain enzyme called carbonic anhydrase 4 (CA4). Wemmie’s team had previously discovered that inhibiting CA4 in the whole brain, or just in its reward center (the nucleus accumbens), of mice, significantly reduced the brain changes that occurred after cocaine withdrawal. In addition, blocking the CA4 enzyme reduced drug-seeking behavior and relapse in the mice.

“What makes this approach promising is that it works in a completely different way from current treatments,” says Wemmie, a professor of psychiatry in the UI Carver College of Medicine. “Instead of targeting opioid receptors, AZD targets a different pathway involved in drug-induced synaptic changes and drug-seeking behavior. This could open the door to new therapies that help people stay in recovery by addressing the brain’s long-term response to drug use.”

Strategies for blood–brain barrier rejuvenation and repair

The blood–brain barrier (BBB) is a dynamic interface that tightly regulates the transport of substances from the blood into the brain. BBB dysfunction can occur with ageing and is a hallmark of many major diseases but is underappreciated as a therapeutic target. Here, Searson and Banks review studies on BBB repair and rejuvenation, highlighting common mechanisms across disorders and potential strategies for pharmacological intervention.

/* */