Toggle light / dark theme

Young galaxies grow up fast: Research reveals unexpected chemical maturity

Astronomers have captured the most detailed look yet at faraway galaxies at the peak of their youth, an active time when the adolescent galaxies were fervently producing new stars.

The observations focused on 18 galaxies located 12.5 billion light-years away. They were imaged across a range of wavelengths from ultraviolet to radio over the past eight years by a trio of telescopes: NASA’s Hubble Space Telescope; NASA’s James Webb Space Telescope (JWST); and ALMA (Atacama Large Millimeter/submillimeter Array) in Chile, of which the U.S. National Science Foundation National Radio Astronomy Observatory is a partner. Data from other ground-based telescopes were also used to make measurements, such as the total mass of stars in the galaxies.

“With this sample, we are uniquely poised to study galaxy evolution during a key epoch in the universe that has been hard to image until now,” says Andreas Faisst, a staff scientist at IPAC, a science and data center for astronomy at Caltech. “Thanks to these exceptional telescopes, we have spatially resolved these galaxies and can observe the stages of star formation as they were happening and their chemical properties when our universe was less than a billion years old.”

A stress-related chemical could initiate symptoms of depression

Depression, one of the most prevalent mental health disorders worldwide, is characterized by persistent feelings of sadness, impaired daily functioning and a loss of interest in daily activities, often along with altered sleeping and eating patterns. Past research findings suggest that stress can play a key role in the emergence of depressive symptoms, yet the biological processes via which it might increase the risk of depression remain poorly understood.

Researchers at Wenzhou Medical University, Capital Medical University and other institutes in China recently carried out a study investigating the biological processes that could link stress to the onset of depression. Their results, published in Molecular Psychiatry, suggest that stress influences the levels of a chemical known as formaldehyde (FA) in specific parts of the brain, which could in turn disrupt their normal functioning, contributing to the emergence of depression.

Antenatal melatonin for cardiovascular deficits in fetal growth restriction

Recent Research by Charmaine R. Rock of Hudson Institute of Medical Research et al. examines antenatal melatonin for cardiovascular deficits in fetal growth restriction 🫀 💊

🔗 📜 Read the study here.


The results of the present study indicate that melatonin has the potential to mitigate the progressive development of impaired endothelium-dependent vasodilatation in growth-restricted lambs. However, this benefit is associated with transient impairment of endothelial function on the first day of life. It would be prudent to investigate the physiological implications of this early vascular dysfunction during the critical period of cardiovascular adaptation to postnatal life. Adjustments to the antenatal melatonin treatment regime, such as tapering the dose before and after birth, could be explored to support a smoother cardiovascular transition on the first day of life.

Additionally, because the present study was conducted up to 4 weeks of age, equivalent to an ∼1-year-old human infant, extending the study outcomes into adulthood is important to determine whether endothelial function is sustained or continues to improve with age, potentially achieving full restoration to the relaxation abilities observed in control lambs. Furthermore, given that functional assessment of the carotid artery was not possible in our study, future research should include such testing to provide a more comprehensive understanding of how FGR impacts vascular function.

The present study provides novel insight into the short-and longer-term, and region-specific impact of melatonin on the cardiovascular system. Our findings demonstrate that, although antenatal melatonin improves the contribution of NO to endothelium-dependent vasodilatation in the femoral artery of newborn FGR+MLT lambs, it is accompanied by an overall reduction in femoral endothelium-dependent vasodilatory capacity. Notably, this reduction in endothelial function is transient and improves by 4 weeks of age, which contrasts with the progressive impairment of endothelial function seen in untreated FGR lambs. Immunohistochemical analysis revealed elevated oxidative stress and inflammatory markers in the femoral artery of 4-week-old FGR+MLT lambs.

This CRISPR breakthrough turns genes on without cutting DNA

A new CRISPR breakthrough shows scientists can turn genes back on without cutting DNA, by removing chemical tags that act like molecular anchors. The work confirms these tags actively silence genes, settling a long-running scientific debate. This gentler form of gene editing could offer a safer way to treat Sickle Cell disease by reactivating a fetal blood gene. Researchers say it opens the door to powerful therapies with fewer unintended side effects.

Versatile mechanophore detects structural damage without false alarms from heat or UV

A newly designed robust mechanophore provides early warning against mechanical failure while resisting heat and UV, report researchers from Institute of Science Tokyo. They combined computational chemistry techniques with thermal and photochemical testing to show that their mechanophore scaffold, called DAANAC, stays inert under environmental stress yet emits a clear yellow signal when mechanically activated. This could pave the way for smart, self-reporting materials in construction, transportation, and electronics.

High-performance polymers, such as plastics and elastomers, are essential materials in modern life that are present in everything from airplane parts to bridges and electronics. Because sudden failures in these sectors can be extremely dangerous and costly, ensuring the safety and longevity of high-performance polymers is a critical challenge.

Since damage is often invisible at the molecular level until it is too late, scientists have been actively developing compounds known as “mechanophores.” These molecular sensors, which can be embedded into the bulk of a polymeric material, serve as an early warning system by chemically reacting to mechanical stress and producing visible light via fluorescence or other phenomena.

Metal–metal bonded molecule achieves stable spin qubit state, opening path toward quantum computing materials

Researchers at Kumamoto University, in collaboration with colleagues in South Korea and Taiwan, have discovered that a unique cobalt-based molecule with metal–metal bonds can function as a spin quantum bit (spin qubit)—a fundamental unit for future quantum computers. The findings provide a new design strategy for molecular materials used in quantum information technologies.

The study is published in the journal Chemical Communications.

This Fungus Turns Bark Beetles’ Defenses Against Them

Spruce bark beetles hijack their host tree’s chemical defenses, transforming them into potent weapons against fungal threats. But a fungus has evolved a way to deactivate those defenses, tipping the balance back in the tree’s favor.

Spruce trees are packed with phenolic compounds, natural chemicals that help protect them from harmful fungi. Scientists at the Max Planck Institute for Chemical Ecology in Jena set out to understand how these defenses move through the forest food web. Their focus was the spruce bark beetle (Ips typographus), an insect that consumes these compounds while feeding on tree tissue. The researchers asked an intriguing question: could the beetles reuse the tree’s own chemical defenses to protect themselves from fungal infections?

Bark beetles strengthen tree defenses for their own use.

Disappointment alters brain chemistry and behavior

From work meetings to first dates, it’s essential to adjust our behavior for success. In certain situations, it can even be a matter of life or death. So how do we switch our behavior when situations change? Published in Nature Communications, neuroscientists describe the neural basis of behavioral flexibility in mice, with insights which may help us understand a wide variety of diseases and disorders, from addiction to obsessive compulsive disorder (OCD) to Parkinson’s disease.

“The brain mechanisms behind changing behaviors have remained elusive, because adapting to a given scenario is very neurologically complex. It requires interconnected activity across multiple areas of the brain,” explains a co-author. “Previous work has indicated that cholinergic interneurons—brain cells that release a neurotransmitter called acetylcholine—are involved in enabling behavioral flexibility. Here, we were able to use advanced imaging techniques to see neurotransmitter release in real time and delve into the fundamental mechanisms behind behavioral flexibility”

In their investigations, the researchers trained mice in a virtual maze, teaching them the correct route to receive a reward. They then switched the route, leading to an unexpected loss of reward for the mice, and observed the effects of this disappointing change using two-photon microscopy.

Modified tau thwarts aggregation in neurodegenerative disease—while retaining its biological function

A designer version of the tau protein, developed by a team led by UT Southwestern Medical Center researchers, maintains its biological function while resisting aggregation, a pathological trait linked to neurodegenerative diseases called tauopathies.

These findings, reported in Structure, could lead to new treatments for conditions including Alzheimer’s disease, frontotemporal dementia, chronic traumatic encephalopathy (CTE), and progressive supranuclear palsy.

“This is the first step toward creating a molecule that could, in principle, replace a protein that’s pathogenic (disease-causing) while still retaining its normal function,” said study leader Lukasz Joachimiak, Ph.D., Associate Professor in the Center for Alzheimer’s and Neurodegenerative Diseases and of Biochemistry and Biophysics at UT Southwestern.

Peering inside perovskite: 3D imaging reveals how passivation boosts solar cell efficiency

Perovskite solar cells have garnered widespread attention as a low-cost, high-efficiency alternative to conventional silicon photovoltaics. However, defects in perovskite films impede charge transport, resulting in energy loss and compromised operational stability.

One solution to this problem is “passivation treatment”—a process that adds chemicals such as simple salts or organic molecules to the film. These small molecules or ions latch onto defects in the perovskite material, preventing the defects from interfering with electrical flow. Unfortunately, verifying the internal efficacy of various passivation treatments remains challenging since most characterization techniques only probe the surface or provide averaged macroscopic information.

Now, however, researchers at the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences (CAS) have made an important breakthrough by developing a three-dimensional (3D) electrical imaging technique that directly reveals how defect passivation treatments work in perovskite films. The study was published in Newton on December 31.

/* */