Toggle light / dark theme

New ultrathin ferroelectric capacitors show promise for compact memory devices

An ultrathin ferroelectric capacitor, designed by researchers from Japan, demonstrates strong electric polarization despite being just 30 nm thick including top and bottom electrodes—making it suitable for high-density electronics. Using a scandium-doped aluminum nitride film as the ferroelectric layer, the team achieved high remanent polarization even at reduced thicknesses. This breakthrough demonstrates good compatibility with semiconductor devices combining logic circuits and memory, paving the way for compact and efficient on-chip memory for future technologies.

Modern electronic technology is rapidly advancing towards miniaturization, creating devices that are increasingly compact yet high-performing. As the devices continue to shrink in size, there is an increasing demand for ultra-small memory materials that can efficiently store data, even in smaller dimensions. Ferroelectric memory devices are promising options for future mobile and compact electronics, as they store information using switchable electric polarization, allowing data retention even without power. However, very few initiatives have reported progress in downscaling of these ferroelectric devices.

Bridging this gap, a research team led by Professor Hiroshi Funakubo from the School of Materials and Chemical Technology, Institute of Science Tokyo (Science Tokyo), Japan, in collaboration with Canon ANELVA Corporation (Canon ANELVA), successfully downscaled a total ferroelectric memory capacitor stack using scandium-substituted aluminum nitride ((Al, Sc)N) thin films with platinum electrodes, reducing the total thickness to just 30 nm including top and bottom electrodes.

Ants may hold solution to human superbug, researchers discover

Has a crucial component to the development of human medicine been hiding under our feet? Auburn University Assistant Professor of Entomology Clint Penick and a team of graduate students may have found that ants are far ahead of humans in antibiotic innovation. “In our study, we tested how ants use antibiotic compounds to fight off pathogens and asked why their chemical defenses remain effective over evolutionary time,” Penick said.

“Humans have relied on antibiotics for less than a century, yet many pathogens have already evolved resistance, giving rise to ‘superbugs.’ Ants, by contrast, have been using antibiotics for tens of millions of years, and they might hold the key to using these powerful drugs more wisely.”

Ants as a source of antibiotics The team looked at just six ant species, all found easily in the Southeastern United States.

Simple wipe test reveals hidden PFAS contamination on firefighter protective gear

The flames die down. The sirens fade. Firefighters peel off their gear, thinking the danger has passed. But in the quiet aftermath, another enemy lingers, an invisible film of “forever chemicals” clinging to jackets, pants and masks.

Researchers at Sylvester Comprehensive Cancer Center, part of the University of Miami Miller School of Medicine, have developed a way to see what the eye cannot.

A simple wipe test detected invisible cancer-linked “forever chemicals” on every set of firefighter gear examined, including breathing masks, according to new research from Sylvester Comprehensive Cancer Center, part of the University of Miami Miller School of Medicine. The non-destructive method offers fire departments a practical way to identify and reduce exposure to per-and polyfluoroalkyl substances (PFAS), chemicals tied to increased cancer risk that can linger on gear long after a fire is out.

The brain has a hidden language and scientists just found it

Researchers have created a protein that can detect the faint chemical signals neurons receive from other brain cells. By tracking glutamate in real time, scientists can finally see how neurons process incoming information before sending signals onward. This reveals a missing layer of brain communication that has been invisible until now. The discovery could reshape how scientists study learning, memory, and brain disease.

How do I make clear ice at home? A food scientist shares easy tips

When you splurge on a cocktail in a bar, the drink often comes with a slab of aesthetically pleasing, perfectly clear ice. The stuff looks much fancier than the slightly cloudy ice you get from your home freezer. How do they do this?

Clear ice is actually made from regular water—what’s different is the freezing process.

With a little help from science, you can make clear ice at home, and it’s not even that tricky. However, there are quite a few hacks on the internet that won’t work. Let’s dive into the physics and chemistry involved.

Dual-cation strategy boosts upconversion efficiency in stable oxide perovskites

Researchers at the Hefei Institutes of Physical Science of the Chinese Academy of Sciences have developed a new way to significantly enhance upconversion luminescence in oxide perovskites, a class of materials known for their thermal and chemical stability but limited optical efficiency.

Led by Professor Jiang Changlong, the team introduced a dual-cation substitution strategy in titanate perovskites by precisely adjusting the sodium-to-lithium ratio at the crystal’s A-site. This controlled substitution triggers a structural transition that improves energy transfer between rare-earth ions, resulting in a marked increase in luminescence intensity and quantum yield.

The findings are published in Journal of Alloys and Compounds.

Magnetic control of lithium enables a safe, explosion-free ‘dream battery’

A new battery technology has been developed that delivers significantly higher energy storage—enough to alleviate EV range concerns—while lowering the risk of thermal runaway and explosion.

A research team at POSTECH has developed a next-generation hybrid anode that uses an external magnetic field to regulate lithium-ion transport, effectively suppressing dendrite growth in high-energy-density electrodes.

A POSTECH research team—led by Professor Won Bae Kim of the Department of Chemical Engineering and the Graduate School of Battery Engineering, together with Dr. Song Kyu Kang and integrated Ph.D. student Minho Kim—has introduced a “magneto-conversion” strategy that applies an external magnetic field to ferromagnetic manganese ferrite conversion-type anodes.

The Causal Accessibility Horizon: A Structural Limit on Finite-Time Reachability

Across physics, chemistry, biology, and engineered systems, the operationally significant questionis often not whether a system will eventually reach a particular state, but whether it can be broughtthere within the time available. This paper establishes a single structural necessity: when causalresponse propagates at finite speed, there exist states that are theoretically admissible but practicallyunreachable within any finite time horizon. We formalize this as the causal accessibility horizon—ageometric boundary determined solely by propagation speed and actuation geometry, beyond whichno control action can have effect by a given time T. This constraint is categorical: it arises fromthe hyperbolic structure of finite-speed dynamics and is logically independent of dissipation, whichgoverns amplitude decay within the accessible region but does not determine its boundary. Theresult reframes questions of control, safety, and stabilization as finite-time reachability problemssubject to irreducible geometric limits.

Deterministic Formation of Single Organic Color Centers in Single-Walled Carbon NanotubesClick to copy article linkArticle link copied!

Quantum light sources using single-walled carbon nanotubes show promise for quantum technologies but face challenges in achieving precise control over color center formation. Here, we present a novel technique for deterministic creation of single organic color centers in carbon nanotubes using in situ photochemical reaction. By monitoring discrete intensity changes in photoluminescence spectra, we achieve precise control over the formation of individual color centers. Furthermore, our method allows for position-controlled formation of color centers as validated through photoluminescence imaging. We also demonstrate photon antibunching from a color center, confirming the quantum nature of the defects formed. This technique represents a significant step forward in the precise engineering of atomically defined quantum emitters in carbon nanotubes, facilitating their integration into advanced quantum photonic devices and systems.

Ultracold atoms observed climbing a quantum staircase

For the first time, scientists have observed the iconic Shapiro steps, a staircase-like quantum effect, in ultracold atoms.

In a recent experiment, an alternating current was applied to a Josephson junction formed by atoms cooled to near absolute zero and separated by an extremely thin barrier of laser light. Remarkably, the atoms were able to cross this barrier collectively and without energy loss, behaving as if the barrier were transparent, thanks to quantum tunneling.

As the oscillating current flowed through the junction, the difference in chemical potential between the two sides did not change smoothly, but instead increased in discrete, evenly spaced steps, like climbing a quantum staircase. The height of each step is directly determined by the frequency of the applied current, and these step-like chemical potential differences are the atomic analog of Shapiro steps in conventional Josephson junctions.

/* */