Toggle light / dark theme

The Impact of Physicochemical Conditions on Lactic Acid Bacteria Survival in Food Products

Lactic acid bacteria (LAB), due to their many advantageous features, have been utilized in food manufacturing for centuries. Spontaneous fermentation, in which LAB play a fundamental role, is one of the oldest methods of food preservation. LAB survival and viability in various food products are of great importance. During technological processes, external physicochemical stressors appear often in combinations. To ensure the survival of LAB, adjustment of optimal physicochemical conditions should be considered. LAB strains should be carefully selected for particular food matrices and the technological processes involved. The LAB’s robustness to different environmental stressors includes different defense mechanisms against stress, including the phenomenon of adaptation, and cross-protection.

Promising medium can capture and convert carbon dioxide, while regenerating itself for reuse

Over the past decades, energy researchers have developed various promising solutions to limit the emission of greenhouse gases and source fuels or other chemicals more sustainably. These solutions include so-called carbon capture technologies and electrolyzers, devices that can capture carbon dioxide (CO2) and convert it into other valuable products, such as carbon monoxide (CO), methanol (CH₃OH), methane (CH₄) and various other compounds.

Some recently introduced solutions for converting CO2 into compounds that can be used as fuels or in industrial settings have achieved promising results. However, most of these devices only work if CO2 is purified (i.e., separated from other gases, contaminants and impurities). This additional purification step reduces the devices’ efficiency and can increase costs associated with their deployment, preventing their large-scale implementation.

An alternative method for the capture and conversion of CO2, known as reactive CO2 capture, could be more efficient and scalable than conventional approaches. This method combines the capture and conversion of CO2 in a single process, relying on compounds containing nitrogen (i.e., amine-based absorbents) to directly convert captured CO2 into desired compounds via electrochemical reactions.

New family of fluorescent molecules glows in water, enhancing visualization of cells

A team of researchers at the Departments of Physical Chemistry and Organic Chemistry of the University of Malaga and The Biomimetic Dendrimers and Photonic Laboratory of the research institute IBIMA Plataforma BIONAND has achieved a breakthrough that combines materials science and biomedicine. They have developed a new family of fluorescent molecules with promising applications in the study of living cells and the medicine of the future. The study has just been published in Advanced Materials.

The team of researchers has created a new family of fluorescent molecules that glow in a surprising way. These types of molecules typically lose part of their intensity or change to more dull colors when dissolved in water or other biological media. However, these new molecules do just the opposite: They emit a higher fluorescence intensity because their coloration shifts to the blue region of the light spectrum.

This behavior, which scientists described as “counterintuitive,” is key because it means that dyes work better in aqueous media like the inside of a cell, something essential for biomedical applications. In other words, they do not turn off when they are needed most but rather maintain—and even enhance—their brightness in real conditions of use.

Webb sheds more light on composition of planetary debris around nearby white dwarf

Using the James Webb Space Telescope (JWST), astronomers have performed infrared observations of a planetary debris disk around a nearby white dwarf known as GD 362. Results of the new observations, presented October 8 on the arXiv preprint server, yield important insights into the chemical composition of this disk.

White dwarfs (WDs) are stellar cores left behind after a star has exhausted its nuclear fuel. Due to their high gravity, they are known to have atmospheres of either pure hydrogen or pure helium.

However, there exists a small fraction of WDs that shows traces of heavier elements, and they are believed to be accreting planetary material. Studies of this material around WDs, which often forms dust disks, is essential to improving our knowledge of how planets form and evolve.

These Tiny Robots Can Swarm, Adapt, and Heal Themselves

Scientists designed microrobots that use sound to swarm, adapt, and heal themselves — working together like a living organism. The discovery could transform medicine, environmental cleanup, and robotics.

Nature’s Blueprint for Robot Swarms

Animals such as bats, whales, and insects have long relied on sound to communicate and find their way. Drawing inspiration from this, an international group of scientists has developed a model for tiny robots that use sound waves to move and work together in large, coordinated swarms that behave almost intelligently. According to team leader Igor Aronson, Huck Chair Professor of Biomedical Engineering, Chemistry, and Mathematics at Penn State, these robotic collectives could eventually take on challenging missions like exploring disaster areas, cleaning polluted environments, or performing medical procedures inside the human body.

A continuous totipotent-like cell-based embryo model recapitulates mouse embryogenesis from zygotic genome activation to gastrulation

The authors identify a chemical cocktail to generate totipotent-like cells, which they then use to build an embryo model. This model captures a developmental spectrum from early embryogenesis to post-implantation events.

Curved nanosheets in anode help prevent battery capacity loss during fast charging

As electric vehicles (EVs) and smartphones increasingly demand rapid charging, concerns over shortened battery lifespan have grown. Addressing this challenge, a team of Korean researchers has developed a novel anode material that maintains high performance even with frequent fast charging.

A collaborative effort by Professor Seok Ju Kang in the School of Energy and Chemical Engineering at UNIST, Professor Sang Kyu Kwak of Korea University, and Dr. Seokhoon Ahn of the Korea Institute of Science and Technology (KIST) has resulted in a hybrid anode composed of graphite and organic nanomaterials. This innovative material effectively prevents capacity loss during repeated fast-charging cycles, promising longer-lasting batteries for various applications. The findings are published in Advanced Functional Materials.

During battery charging, lithium ions (Li-ions) move into the , storing energy as Li atoms. Under rapid charging conditions, excess Li can form so-called “dead lithium” deposits on the surface, which cannot be reused. This buildup reduces capacity and accelerates battery degradation.

DNA signaling cascades offer a better way to monitor drug therapy at home

Chemists at Université de Montréal have developed “signaling cascades” made with DNA molecules to report and quantify the concentration of various molecules in a drop of blood, all within five minutes.

Their findings, validated by experiments on mice, are published in the Journal of the American Chemical Society, and may aid efforts to build point-of-care devices for monitoring and optimizing the treatment of various diseases.

This result was achieved by a research group led by UdeM chemistry professor Alexis Vallée-Bélisle.

Generation of harmful slow electrons in water is a race between intermolecular energy decay and proton transfer

When high-energy radiation interacts with water in living organisms, it generates particles and slow-moving electrons that can subsequently damage critical molecules like DNA. Now, Professor Petr Slavíček and his bachelor’s student Jakub Dubský from UCT Prague (University of Chemistry and Technology, Prague) have described in detail one of the key mechanisms for the creation of these slow electrons in water, a process known as Intermolecular Coulombic Decay (ICD). Their powerful mathematical model successfully explains all the data from complex laser experiments conducted at ETH Zurich (Hans-Jakob Woerner team).

The work, which deepens the fundamental understanding of radiation chemistry, has been published in the journal Nature Communications.

A detailed knowledge of the processes in , combined with advances in research technologies using high-energy radiation, is transforming the field of radiation chemistry. In the future, these insights could lead to significant changes in various fields, including medicine, particularly in developing more sensitive and controllable applications for devices based on ionizing radiation.

/* */