Toggle light / dark theme

CATL unveils battery with 12-minute charging and 1.5 million mile life

The company is already the world’s largest battery maker, supplying cells to major automakers. With this latest development, the battery giant is positioning itself at the center of the race to deliver gasoline-like convenience without sacrificing durability.

The core challenge engineers set out to address was whether an EV battery could withstand repeated ultra-fast charging without rapid degradation. A 5C charge rate means an 80-kilowatt-hour battery pack could theoretically accept around 400 kilowatts of power. That level of charging can refill a battery in roughly 12 minutes, similar to a typical gas stop.

Fast charging has long been associated with faster wear. The engineers tested whether the chemistry could handle that stress over time. According to the company, the answer was yes. Under standard conditions at 68°F, the battery retained at least 80 percent of its original capacity after 3,000 full charge-and-discharge cycles.

Physics-driven ML to accelerate the design of layered multicomponent electronic devices

Many advanced electronic devices – such as OLEDs, batteries, solar cells, and transistors – rely on complex multilayer architectures composed of multiple materials. Optimizing device performance, stability, and efficiency requires precise control over layer composition and arrangement, yet experimental exploration of new designs is costly and time-intensive. Although physics-based simulations offer insight into individual materials, they are often impractical for full device architectures due to computational expense and methodological limitations.

Schrödinger has developed a machine learning (ML) framework that enables users to predict key performance metrics of multilayered electronic devices from simple, intuitive descriptions of their architecture and operating conditions. This approach integrates automated ML workflows with physics-based simulations in the Schrödinger Materials Science suite, leveraging physics-based simulation outputs to improve model accuracy and predictive power. This advancement provides a scalable solution for rapidly exploring novel device design spaces – enabling targeted evaluations such as modifying layer composition, adding or removing layers, and adjusting layer dimensions or morphology. Users can efficiently predict device performance and uncover interpretable relationships between functionality, layer architecture, and materials chemistry. While this webinar focuses on single-unit and tandem OLEDs, the approach is readily adaptable to a wide range of electronic devices.

Solid, iron-rich megastructure under Hawaii slows seismic waves and may drive plume upwelling

Mantle plumes beneath volcanic hotspots, like Hawaii, Iceland, and the Galapagos, seem to be anchored into a large structure within the core-mantle boundary (CMB). A new study, published in Science Advances, takes a deeper dive into the structure under Hawaii using P-and S-wave analysis and mineralogical modeling, revealing its composition and properties.

It is known that anomalous structures exist within Earth’s lower mantle, including large low-velocity provinces (LLVPs) and ultra low-velocity zones (ULVZs), which cause seismic waves to slow down dramatically. Larger ULVZs, typically referred to as mega-ultra low velocity zones, are found near the CMB and often beneath oceanic hotspots like Hawaii. Mega-ULVZs can be over several hundred kilometers in length. Previous studies have linked these megastructures to mantle plumes and some say they may preserve primordial geochemical signatures.

However, current tomographic methods have been unable to fully analyze mega-ULVZs, and their composition and origin remain unclear. Seismic waves, on the other hand, present a way to investigate ULVZs, largely due to the effect ULVZs have on wave velocity.

Neptunium study yields plutonium insights for space exploration

Researchers at the Department of Energy’s Oak Ridge National Laboratory are breathing new life into the scientific understanding of neptunium, a unique, radioactive, metallic element—and a key precursor for production of the plutonium-238, or Pu-238, that fuels exploratory spacecraft.

The ORNL team’s research arrives during a period of increased national interest in the use of Pu-238 in radioisotope thermoelectric generators, or RTGs. Often used in space missions such as NASA’s Perseverance Rover for long-term power, RTGs convert heat from radioactive decay into electricity. Advancing RTG knowledge and application possibilities also requires the same high-level evaluation of both chemical reactions and structural characterization, two key aspects of the materials science for which ORNL is known.

“When people want to do scientific experiments in space, they need something to power their instruments, and plutonium is typically the power source because things like solar and lithium ion batteries don’t withstand deep space,” said Kathryn Lawson, radiochemist in ORNL’s Fuel Cycle Chemical Technology Group and lead author of the new study.

Supermassive black holes sit in ‘eye of their own storms,’ studies find

Gigantic black holes lurk at the center of virtually every galaxy, including ours, but we’ve lacked a precise picture of what impact they have on their surroundings. However, a University of Chicago-led group of scientists has used data from a recently launched satellite to reveal our clearest look yet into the boiling, seething gas surrounding two supermassive black holes, each located in the center of massive galaxy clusters.

“For the first time, we can directly measure the kinetic energy of the gas stirred by the black hole,” said Annie Heinrich, UChicago graduate student and among the lead authors on one of two papers on the findings, released in Nature. “It’s as though each supermassive black hole sits in the ‘eye of its own storm.’”

The readings came from the satellite XRISM, which was launched in 2023 by the Japanese Aerospace Exploration Agency in partnership with NASA and the European Space Agency. It has a unique ability to track the motions and read the chemical makeup of extremely hot, X-ray emitting gas in galaxy clusters.

Tiny droplets navigate mazes using ‘chemical echolocation,’ without sensors or computers

A recent study by a team of researchers led by TU Darmstadt has found that tiny amounts of liquid can navigate their way through unknown environments like living cells—without sensors, computers or external control. The tiny droplets can navigate autonomously, are able to detect obstacles from a distance and move reliably through complex mazes—without cameras or electronics. The reason for this is a mechanism that the research team refers to as “chemical echolocation.”

Here’s how it works: Instead of emitting sound waves like bats in dark caves, the droplets release small amounts of chemicals into their environment as they move. These chemicals spread throughout the environment and are reflected by nearby walls and dead ends. The returning “echo” subtly pushes the droplet away from blocked paths and toward open paths, thus guiding its movement.

Exposing Nuclear Magic

Calculations show how the mysterious “magic numbers” that stabilize nuclear structures emerge naturally from nuclear forces—once these are described with appropriate spatial resolution.

Atomic nuclei have been studied for over a century, yet some of nuclear physics’ most basic questions remain unanswered: How many bound combinations of protons and neutrons, or isotopes, can exist? Where do the limits of nuclear existence lie? How are chemical elements synthetized in the Universe? Clues to solving these puzzles lie in the vast phenomenology of nuclear structure—the measured properties of tens of thousands of nuclear states, their decays, and their reactions. In this bedlam of information, patterns and irregularities in data provide crucial hints. One such irregularity was spotted as early as 1934 [1]: Nuclei containing specific numbers of protons and neutrons (2, 8, 20, 28, 50, 82…) are unexpectedly stable. These “magic numbers” (Fig.

A more realistic picture of platinum electrodes

Current electrochemical theory does not adequately describe realistic platinum electrodes. Scientists at Leiden University have now, for the first time, mapped the influence of imperfect platinum surfaces. This provides a more accurate picture of these electrodes, with applications in hydrogen production and sensors.

Platinum electrodes play a crucial role in electrochemical applications. They are used in sensors, catalysis and fuel cells, for example in the production of green hydrogen. These developments call for a better and more realistic understanding of the underlying fundamental electrochemistry. Current theory falls short.

The surface of a platinum electrode appears smooth. But if you zoom in to the atomic level, you see an irregular landscape with so-called defects. These turn out to influence the electrochemical reactions that take place there. Ph.D. candidates Nicci Lauren Fröhlich and Jinwen Liu investigated this influence under the supervision of Professor Marc Koper and Assistant Professor Katharina Doblhoff-Dier at the Leiden Institute of Chemistry. Their results are published in Nature Chemistry.

Earth’s largest volcanic event reshaped an oceanic plate, seismic wave analysis reveals

A research group has revealed through seismic wave analysis that the oceanic plate beneath the Ontong Java Plateau—the world’s largest oceanic plateau—was extensively altered by massive volcanic activity during its formation. The study is published in Geophysical Research Letters.

The oceanic plate beneath the Ontong Java Plateau (OJP) has a composite structure consisting of layered structures overlaid by dike swarms. Low seismic velocity anomalies within the plate suggest chemical modification by magma derived from a thermochemical plume. These findings demonstrate that oceanic plates can undergo significant physicochemical modification due to large-scale volcanic activity, contributing to a comprehensive understanding of plate formation processes.

The research was led by Lecturer Azusa Shito of Okayama University of Science, together with Associate Professor Akira Ishikawa of the Institute of Science Tokyo and Professor Masako Yoshikawa of Hiroshima University.

A clearer look at critical materials, thanks to refrigerator magnets

With an advanced technology known as angle-resolved photoemission spectroscopy (ARPES), scientists are able to map out a material’s electron energy-momentum relationship, which encodes the material’s electrical, optical, magnetic and thermal properties like an electronic DNA. But the technology has its limitations; it doesn’t work well under a magnetic field. This is a major drawback for scientists who want to study materials that are deployed under or even actuated by magnetic fields.

Inspired by refrigerator magnets, a team of Yale researchers may have found a solution. Their study was featured recently on the cover of The Journal of Physical Chemistry Letters.

Quantum materials —such as unconventional superconductors or topological materials—are considered critical to advancing quantum computing, high-efficiency electronics, nuclear fusion, and other fields. But many of them need to be used in the presence of a magnetic field, or even only become activated by magnetic fields. Being able to directly study the electronic structure of these materials in magnetic fields would be a huge help in better understanding how they work.

/* */