Toggle light / dark theme

Arginine supplementation curbs Alzheimer’s disease pathology in animal models

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is one of the leading causes of dementia worldwide, and currently has no definitive cure. Although antibody-based therapies that target amyloid β (Aβ) have recently been developed, their clinical effectiveness remains limited. These treatments can be costly and cause immune-related side effects, highlighting the need for safer, affordable, and widely accessible approaches that can slow the progression of AD.

In a study, published online on October 30, 2025, in Neurochemistry International, researchers from Kindai University and collaborating institutions discovered that oral administration of arginine, a naturally occurring amino acid and safe chemical chaperone, effectively suppresses Aβ aggregation and its toxic effects in animal models of AD.

The researchers emphasized that although arginine is available as an over-the-counter dietary supplement, the dosage and administration protocol employed in this study was optimized for research purposes and does not correspond to commercially available formulations.

Laser-induced break-up of C₆₀ fullerenes caught in real-time on X-ray camera

The understanding of complex many-body dynamics in laser-driven polyatomic molecules is crucial for any attempt to steer chemical reactions by means of intense light fields. Ultrashort and intense X-ray pulses from accelerator-based free electron lasers (FELs) now open the door to directly watch the strong reshaping of molecules by laser fields.

A prototype molecule, the famous football-shaped “Buckminsterfullerene” C₆₀, was studied both experimentally and theoretically by physicists from two Max Planck Institutes, the one for Nuclear Physics (MPIK) in Heidelberg and the one for the Physics of Complex Systems (MPI-PKS) in Dresden in collaboration with groups from the Max Born Institute (MBI) in Berlin and other institutions from Switzerland, U.S. and Japan.

For the first time, the experiment carried out at the Linac Coherent Light Source (LCLS) of the SLAC National Accelerator Laboratory could image strong-laser-driven molecular dynamics in C₆₀ directly.

New implant captures gut-brain signals in awake, moving animals

Scientists have been able to measure the electrical signals in the “second brain in our guts” for the first-ever time, giving renewed understanding to its interconnection with the brain.

Researchers from the Department of Chemical Engineering and Biotechnology (CEB) and Department of Engineering at the University of Cambridge, and Thayer School of Engineering at Dartmouth have created a miniature device, thinner than the width of a hair, that can be placed between the layers of the colon to record these signals.

The device, a soft, flexible electronic implant, has been tested in rodents and pigs so far and works even in freely moving animals, detecting responses to various stimulants and physical pressure.

Ursula Eysin on Uncertainty and Future Scenarios

How do we turn uncertainty from a threat into an advantage?

Three years ago, I sat down with someone who has built her entire career around that question: Ursula Eysin, founder of Red Swan and one of the most multidimensional futurists I’ve ever met.

Ursula is a trained ballerina who speaks seven languages, reads chemistry books for fun, mentors startups, and teaches at five universities — and somehow still finds time to help leaders navigate the unknown with clarity and courage.

In this conversation, we dig into: • Why predicting the future is a powerless position • Scenario planning vs. futurism — and why leaders need both • How to reframe uncertainty as a strategic asset • What it truly means to connect as humans in an age of AI • And why strong, diverse leadership matters more than ever.

My favourite line from Ursula remains razor-sharp:

“Turn uncertainty into an advantage. See it as a gift. And connect to other people.”

If you’re steering a team, a company, or even your own life through volatility, this one is worth your time.

Aging alters the protein landscape in the brain — diet can counteract this

A study by the Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena shows that the chemical composition of proteins in the brain undergoes fundamental changes with aging. In particular, ubiquitylation—a process that marks proteins and thus controls their activity and degradation—undergoes drastic changes in the aging brain. Interestingly, a change in nutrition, such as short-term dietary restriction, can partially revert some of these molecular patterns. These findings open up new opportunities to better understand the aging process of the brain and related diseases.

Airborne sensors map ammonia plumes in California’s Imperial Valley

A recent study led by scientists at NASA’s Jet Propulsion Laboratory in Southern California and the nonprofit Aerospace Corporation shows how high-resolution maps of ground-level ammonia plumes can be generated with airborne sensors, highlighting a way to better track the gas.

A key chemical ingredient of fine particulate matter—tiny particles in the air known to be harmful when inhaled—ammonia can be released through agricultural activities such as livestock farming and geothermal power generation as well as natural geothermal processes. Because it’s not systematically monitored, many sources of the pungent gas go undetected.

Published in Atmospheric Chemistry and Physics, the study focuses on a series of 2023 research flights that covered the Imperial Valley to the southeast of the Salton Sea in inland Southern California, as well as the Eastern Coachella Valley to its northwest. Prior satellite-based research has identified the Imperial Valley as a prolific source of gaseous ammonia.

From light to logic: First complete logic gate achieved in soft material using light alone

Researchers from McMaster University and the University of Pittsburgh have created the first functionally complete logic gate—a NAND gate (short for “NOT AND”)—in a soft material using only beams of visible light. The discovery, published in Nature Communications, marks a significant advance in the field of materials that compute, in which materials themselves process information without traditional electronic circuitry.

“This project has been part of my scientific journey for over a decade,” said first author Fariha Mahmood, who began studying the gels as an undergraduate researcher at McMaster and is now pursuing postdoctoral research at the University of Cambridge. “To see these materials not only respond to light but also perform a logic operation feels like watching the material ‘think.’ It opens the door to soft systems making decisions on their own.”

Mahmood is joined by authors Anna C. Balazs, distinguished professor of chemical and petroleum engineering, and Victor V. Yashin, research assistant professor at Pitt’s Swanson School of Engineering; and corresponding author Kalaichelvi Saravanamuttu, professor of chemistry and chemical biology at McMaster.

Coaxing bilayer graphene into a single diamond-like layer for industrial applications

Graphene’s enduring appeal lies in its remarkable combination of lightness, flexibility, and strength. Now, researchers have shown that under pressure, it can briefly take on the traits of one of its more glamorous carbon cousins.

By introducing nitrogen atoms and applying pressure, a team of scientists has coaxed bilayer grown through chemical vapor deposition (CVD) into a diamond-like phase—without the need for extreme heat. The finding, reported in Advanced Materials Technologies, shows a scalable way to create ultrathin coatings that combine the toughness of diamond with the processability of graphene.

New type of DNA damage discovered in our cells’ mitochondria

A previously unknown type of DNA damage in the mitochondria, the tiny power plants inside our cells, could shed light on how our bodies sense and respond to stress. The findings of the UC Riverside-led study are published today in the Proceedings of the National Academy of Sciences and have potential implications for a range of mitochondrial dysfunction-associated diseases, including cancer and diabetes.

Mitochondria have their own genetic material, known as mitochondrial DNA (mtDNA), which is essential for producing the energy that powers our bodies and sending signals within and outside cells. While it has long been known that mtDNA is prone to damage, scientists didn’t fully understand the biological processes. The new research identifies a culprit: glutathionylated DNA (GSH-DNA) adducts.

An adduct is a bulky chemical tag formed when a chemical, such as a carcinogen, attaches directly to DNA. If the damage isn’t repaired, it can lead to DNA mutations and increase the risk of disease.

/* */