Menu

Blog

Archive for the ‘supercomputing’ category

May 23, 2020

Russian scientists expect achieving quantum supremacy in two years

Posted by in categories: particle physics, quantum physics, supercomputing

MOSCOW, Janaury 28. /TASS/. The quantum computer currently in development by Russian scientists will achieve the so-called “quantum supremacy,” or the ability to perform operations, practically impossible for the existing conventional supercomputers, in two years, says Sergei Kulik, the head of Quantum Technologies Center of the Moscow State University Faculty of Physics.

“There is a Perspective Research Fund project called ‘Priboy.’ According to the project’s goals, we must create a quantum simulator and achieve quantum supremacy in two years — i.e. show a calculation that is impossible for a classical computer,” Kulik said.

Currently, the laboratory has two physical platforms for building a quantum computer — the one based on neutral atoms and the other based on photon chips.

May 22, 2020

How Many Qubits Are Needed for Quantum Supremacy?

Posted by in categories: particle physics, quantum physics, supercomputing

Quantum computers theoretically can prove more powerful than any supercomputer, and now scientists calculate just what quantum computers need to attain such “quantum supremacy,” and whether or not Google achieved it with its claims last year.

Whereas classical computers switch transistors either on or off to symbolize data as ones or zeroes, quantum computers use quantum bits—qubits—that, because of the bizarre nature of quantum physics, can be in a state of superposition where they are both 1 and 0 simultaneously.

Superposition lets one qubit perform two calculations at once, and if two qubits are linked through a quantum effect known as entanglement, they can help perform 22 or four calculations simultaneously; three qubits, 23 or eight calculations; and so on. In principle, a quantum computer with 300 qubits could perform more calculations in an instant than there are atoms in the visible universe.

May 20, 2020

Microsoft OpenAI computer is world’s 5th most powerful

Posted by in categories: robotics/AI, supercomputing

Microsoft announced Tuesday that it has built the fifth most powerful computer on Earth.

Packed with 285,000 and 10,000 GPUs, the was built in collaboration with San Francisco-based artificial intelligence research organization OpenAI. Microsoft announced its partnership with OpenAI last year and contributed $1 billion to the project.

Continue reading “Microsoft OpenAI computer is world’s 5th most powerful” »

May 17, 2020

“Hacking Bitcoin” Called Super Computers to Crypto Mining

Posted by in categories: bitcoin, cybercrime/malcode, supercomputing

Several supercomputers in Europe have been hacked in the past few days. Attackers are thought to use these supercomputers for mining Monero (XMR).

A massive attack was carried out on some supercomputers based in Germany, the UK and Switzerland. These events first surfaced with the announcement of the University of Edinburgh on Monday. University of Edinburgh; He explained that the supercomputer known as ARCHER has detected a “vulnerability in the input nodes” and the system has been disabled. Authorities had to reset their SSH password to prevent the attack.

The attacks were not limited to this. An organization called bwHPC in Germany also made a statement on Monday, and five different supercomputers in Germany; It announced that it was closed due to “vulnerabilities” similar to those in the UK.

May 15, 2020

Meet the Intern Using Quantum Computing to Study the Early Universe

Posted by in categories: cosmology, education, nanotechnology, quantum physics, supercomputing

With the help of the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory, Juliette Stecenko is exploring cosmology—a branch of astronomy that investigates the origin and evolution of the universe, from the Big Bang to today and into the future. As an intern through DOE’s Science Undergraduate Laboratory Internships (SULI) program, administered at Brookhaven by the Office of Educational Programs (OEP), Stecenko is using modern supercomputers and quantum computing platforms to perform astronomy simulations that may help us better understand where we came from.

Stecenko works under the guidance of Michael McGuigan, a computational scientist in the quantum computing group at Brookhaven’s Computational Science Initiative. The two have been collaborating on simulating Casimir energy—a small force that two electrically neutral surfaces held a tiny distance apart will experience from quantum, atomic, or subatomic fluctuations in the vacuum of space. The vacuum energy of the universe and the Casimir pressure of this energy could be a possible explanation of the origin and evolution of the universe, as well a possible cause of its accelerated expansion.

“Casimir energy is something scientists can measure in the laboratory and is especially important for nanoscience, or in cosmology, in the very early universe when the universe was very small,” McGuigan said.

May 11, 2020

Supercomputer Simulations Identify Several Drugs as Potential Candidates Against COVID-19

Posted by in categories: biotech/medical, supercomputing

Drugs used for curing hepatitis C might also help against Covid-19 / World Health Organization publishes paper presented by researchers from Mainz University.

Several drugs approved for treating hepatitis C viral infection were identified as potential candidates against COVID-19, the disease caused by the SARS-CoV-2 coronavirus. This is the result of research based on extensive calculations using the MOGON II supercomputer at Johannes Gutenberg University Mainz (JGU). One of the most powerful computers in the world, MOGON II is operated by JGU and the Helmholtz Institute Mainz.

As the JGU researchers explained in their paper recently published at the World Health Organization (WHO) website, they had simulated the way that about 42,000 different substances listed in open databases bind to certain proteins of SARS-CoV-2 and thereby inhibit the penetration of the virus into the human body or its multiplication.

Continue reading “Supercomputer Simulations Identify Several Drugs as Potential Candidates Against COVID-19” »

May 5, 2020

Four years of calculations lead to new insights into muon anomaly

Posted by in categories: particle physics, supercomputing

Two decades ago, an experiment at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory pinpointed a mysterious mismatch between established particle physics theory and actual lab measurements. When researchers gauged the behavior of a subatomic particle called the muon, the results did not agree with theoretical calculations, posing a potential challenge to the Standard Model—our current understanding of how the universe works.

Ever since then, scientists around the world have been trying to verify this discrepancy and determine its significance. The answer could either uphold the Standard Model, which defines all of the known subatomic particles and how they interact, or introduce the possibility of an entirely undiscovered physics. A multi-institutional research team (including Brookhaven, Columbia University, and the universities of Connecticut, Nagoya and Regensburg, RIKEN) have used Argonne National Laboratory’s Mira supercomputer to help narrow down the possible explanations for the discrepancy, delivering a newly precise theoretical calculation that refines one piece of this very complex puzzle. The work, funded in part by the DOE’s Office of Science through its Office of High Energy Physics and Advanced Scientific Computing Research programs, has been published in the journal Physical Review Letters.

A muon is a heavier version of the electron and has the same electric charge. The measurement in question is of the muon’s magnetic moment, which defines how the particle wobbles when it interacts with an external magnetic field. The earlier Brookhaven experiment, known as Muon g-2, examined muons as they interacted with an electromagnet storage ring 50 feet in diameter. The experimental results diverged from the value predicted by theory by an extremely small amount measured in parts per million, but in the realm of the Standard Model, such a difference is big enough to be notable.

May 2, 2020

Could Photonic Chips Outpace the Fastest Supercomputers?

Posted by in categories: encryption, quantum physics, robotics/AI, supercomputing

There’s been a lot of talk about quantum computers being able to solve far more complex problems than conventional supercomputers. The authors of a new paper say they’re on the pat h to showing an optical computer c an do so, too.

The idea of using light to carry out computing has a long pedigree, and it has gained traction in recent years with the advent of silicon photonics, which makes it possible to build optical circuits using the same underlying technology used for electronics. The technology s hows particular promise for accelerating deep learning, and is being actively pursued by Intel and a number of startups.

Now Chinese researchers have put a photonic chip t o work tackling a fiendishly complex computer science challenge called the s ubset sum problem in a paper in Science Advances. It ha s some potential applications in cryptography and resource allocation, but primarily it’s used as a benchmark to test the limits of computing.

Continue reading “Could Photonic Chips Outpace the Fastest Supercomputers?” »

May 2, 2020

Transhumanism 2.0 (Full Documentary)

Posted by in categories: cybercrime/malcode, cyborgs, education, Elon Musk, genetics, neuroscience, quantum physics, robotics/AI, supercomputing, transhumanism

TABLE OF CONTENTS —————
:00–15:11 : Introduction
:11–36:12 CHAPTER 1: POSTHUMANISM
a. Neurotechnology b. Neurophilosophy c. Teilhard de Chardin and the Noosphere.

—————————————————————————————–
POSTHUMAN TECHNOLOGY
—————————————————————————————–

Continue reading “Transhumanism 2.0 (Full Documentary)” »

Apr 28, 2020

World’s first 3D simulations of superluminous supernovae

Posted by in categories: cosmology, physics, supercomputing

For most of the 20th century, astronomers have scoured the skies for supernovae—the explosive deaths of massive stars—and their remnants in search of clues about the progenitor, the mechanisms that caused it to explode, and the heavy elements created in the process. In fact, these events create most of the cosmic elements that go on to form new stars, galaxies, and life.

Because no one can actually see a supernova up close, researchers rely on to give them insights into the physics that ignites and drives the event. Now for the first time ever, an international team of astrophysicists simulated the three-dimensional (3D) physics of superluminous supernovae—which are about a hundred times more luminous than typical supernovae. They achieved this milestone using Lawrence Berkeley National Laboratory’s (Berkeley Lab’s) CASTRO code and supercomputers at the National Energy Research Scientific Computing Center (NERSC). A paper describing their work was published in Astrophysical Journal.

Astronomers have found that these superluminous events occur when a magnetar—the rapidly spinning corpse of a massive star whose magnetic field is trillions of times stronger than Earth’s—is in the center of a young supernova. Radiation released by the magnetar is what amplifies the supernova’s luminosity. But to understand how this happens, researchers need multidimensional simulations.

Page 1 of 3512345678Last