Toggle light / dark theme

Neutron beam platform unites simulation and biology for advanced therapy research

One of ANSTO’s advanced imaging instruments Dingo now delivers a rare fusion of simulation and radiobiology, becoming a launchpad for an innovative neutron therapy innovation.

This unique scientific capability comprises a single research platform for high-fidelity simulation, real-time dosimetry, and biological response data—all from a neutron beam instrument.

Two new papers published in Scientific Reports report how ANSTO researchers have adapted neutron tomography into a fully integrated testbed for neutron capture therapy research. The platform allows scientists to model conditions, plan experiments, and irradiate , all within a validated, operational system.

Cost Effective way of Converting Hemp Waste into Ethanol Fuel

Breaking the cellulose and hemicellulose chain has for a long time been a very expensive process. Now with research and this new system it can be done in a rather simple and cost effective manner.

For long, the most expensive part of making cellulosic ethanol has been to be able to break this molecule chain, making it non-competitive with corn ethanol. With this new technology, cellulosic ethanol can compete with corn ethanol as cellulosic ethanol is more environmentally friendly alternative.

To learn more about the basics of cellulosic ethanol and starch ethanol, see the article linked below.


This is the latest and greatest innovation in the world of cellulosic ethanol production. It shows potential for significant cost savings and proving to be even more profitable than corn ethanol.

Stowaways in the cargo: Contaminating nucleic acids in rAAV preparations for gene therapy

A useful review on the nucleic acid contaminants found in AAVs, how to detect such contaminants, their biological implications, and how we can minimize nucleic acid contaminants in the future through new manufacturing innovations! #biotech #genetherapy


Brimble and colleagues review nucleic acid heterogeneity of rAAV for gene therapy. Alongside the intended expression cassette, non-therapeutic DNA is present within rAAV preparations. These contaminants can be transferred and can even expressed after delivery. They discuss sources of DNA contamination in rAAV and highlight existing strategies to improve vector purity.

Beyond kidney dialysis and transplantation: what’s on the horizon?

There are currently over 750,000 patients with end-stage renal disease (ESRD) in the United States. Globally, 2.6 million patients receive renal replacement therapy with either dialysis or a kidney transplant, which is estimated to double in number by 2030. Kidney care was revolutionized by the invention of the dialysis machine in 1943 by Willem Kolff and the subsequent development of the arteriovenous fistula in 1960 by Belding Scribner. The first successful human kidney transplantation was performed in 1954 by Joseph Murray, teaming with John Merrill, and has since become the treatment of choice for patients with ESRD. Although there have been only incremental innovations since that time, recent exciting developments in kidney research have the potential to transform treatment beyond dialysis and transplantation. Here, we highlight five emerging approaches for ESRD.

(Circa 2022)


This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Patients’ own autoantibodies may hold key to boosting cancer immunotherapy response

A new study has revealed that autoantibodies—immune proteins traditionally associated with autoimmune disease—may profoundly influence how cancer patients respond to immunotherapy.

The study, published in Nature, offers a potential breakthrough in solving one of modern-day oncology’s most frustrating mysteries: why checkpoint inhibitors work for some patients but not others—and how we can extend their benefits to more people.

“Our analysis shows that certain naturally occurring autoantibodies can tilt the odds dramatically toward shrinking tumors,” said senior author Aaron Ring, MD, Ph.D., an associate professor at Fred Hutch Cancer Center. “We saw some cases where autoantibodies boosted a patient’s likelihood of responding to checkpoint blockade by as much as five-to ten-fold.”

New Catalyst Breakthrough Slashes Platinum Use in Green Hydrogen Tech

Researchers engineered a graphene-encased catalyst with ultra-low platinum use that delivers high-efficiency, industrial-scale hydrogen production. Proton exchange membrane (PEM) water electrolysis plays a key role in the production of green hydrogen on a large scale. One of the most commonly use

Targeting the ‘undruggable’: New molecular degraders offer hope for aggressive breast cancer

In the battle against aggressive breast cancer, a once-elusive target is now within reach—thanks to a breakthrough from a team from the Faculty of Medicine at Hebrew University. Dr. Raphael Benhamou and M.Sc. student Liann Kassabri have developed innovative druglike molecules capable of degrading HuR, a key RNA-binding protein that stabilizes oncogenes and fuels cancer progression.

HuR (also known as ELAVL1) has long been labeled “undruggable” due to its structural flexibility and lack of a conventional active site. Overexpressed in many cancer types—particularly breast cancer—HuR fortifies by protecting mRNAs that drive and survival.

“We knew that simply blocking HuR wasn’t enough,” says Dr. Benhamou. “We needed to eliminate it altogether.” Strikingly, this elimination led to a three to four orders of magnitude improvement in anticancer properties compared to traditional HuR-binding molecules that do not induce degradation.

Unique immune cell linked to aggressive leukemia may lead to improved treatment outcomes

A new study by Indiana University School of Medicine researchers has revealed a breakthrough in the fight against acute myeloid leukemia, one of the most aggressive and fatal blood cancers in adults. The discovery of a previously unrecognized immune cell could lead to new therapies that are less treatment-resistant than current options for patients—meaning higher survival rates for people with blood cancers.

Acute myeloid leukemia is a cancer that begins in the bone marrow and leads to impaired and function. Currently the sixth-leading cause of cancer-related death in adults, acute myeloid leukemia is resistant to many and relapse is common.

“Despite transformative progress in the treatment of many blood cancers, acute myeloid leukemia therapies have remained largely unchanged for over three decades,” said Reuben Kapur, Ph.D., director and program leader of the Hematologic Malignancies and Stem Cell Biology Program at the IU School of Medicine Herman B Wells Center for Pediatric Research, a researcher with the IU Melvin and Bren Simon Comprehensive Cancer Center and co-author of the study.