Toggle light / dark theme

How scientists got a glimpse of the inner workings of protein language models

Now, a team of researchers based at the Massachusetts Institute of Technology (the United States) has tried to shed light on the inner workings of the language models that predict the structure and function of proteins by using an innovative technique. They have described their findings in the study, ‘Sparse autoencoders uncover biologically interpretable features in protein language model representations’, which was published in the journal Proceedings of the National Academy of Sciences last month. The team included Onkar Gujral, Mihir Bafna, Eric Alm, and Bonnie Berger.

Story continues below this ad.

Berger, the senior author of the study, told The Indian Express over email, “This is the first work that allows us to look inside the ‘black box’ of protein language models to gain insights into why they function as they do.”

Scientists may have found a way to strengthen bones for life

Scientists at Leipzig University have identified a little-known receptor, GPR133, as a key player in bone health. By stimulating this receptor with a new compound called AP503, they were able to boost bone strength in mice, even reversing osteoporosis-like conditions. The breakthrough highlights a promising path toward safer and more effective treatments for millions struggling with bone loss, while also hinting at broader benefits for aging populations.

A new way to control terahertz light for faster electronics

In a breakthrough for next-generation technologies, scientists have learned how to precisely control the behavior of tiny waves of light and electrons, paving the way for faster communications and quantum devices.

Controlling light at the smallest scales is crucial for creating incredibly small, fast and efficient devices. Instead of bulky wires and circuits, we can use light to transmit information. One challenge of this approach is that light, with its relatively large wavelength, is not easily confined to small spaces.

However, in a study published in the journal Light: Science & Applications, researchers have developed a method to control tiny waves of light and electrons called Dirac plasmon polaritons (DPPs).

“Scientists Achieved Burning Plasma”: Los Alamos Breaks Fusion Ignition With THOR Window System Generating 2.4 Megajoules of Self-Sustaining Energy

Los Alamos National Laboratory (LANL), in collaboration with Lawrence Livermore National Laboratory (LLNL), has achieved a breakthrough in fusion research by

Optical fibre to revolutionise long-distance communication

UK photonics researchers have developed a new kind of hollow-core optical fibre that can transmit light signals about 45% further than current telecom fibres before needing a boost.

The scientists from Microsoft Azure Fiber and the University of Southampton have called this a “breakthrough result” which paves the way for a potential revolution in optical communications.

With further advancements, the new fibre could enable more energy-efficient optical networks with unprecedented data transmission capacities.

China’s Tang Jet: Electric Thrust, No Fuel Needed!

A Chinese professor has unveiled a bold plasma jet engine that converts electricity directly into thrust — no fuel, no combustion. Known as the “Tang Jet,” this prototype mimics lightning by superheating air into plasma to generate clean, powerful propulsion. While it’s not ready to lift a jetliner yet, this breakthrough could one day redefine zero-emission flight.

/* */