Toggle light / dark theme

Algorithms reveal how propane becomes propylene for everyday products

Countless everyday products, from plastic squeeze bottles to outdoor furniture, are derived by first turning propane into propylene.

A 2021 study in Science demonstrated that chemists could use tandem nanoscale catalysts to integrate multiple steps of the process into a single reaction—a way for companies to increase yield and save money. But it was unclear what was happening at the , making it difficult to apply the technique to other key industrial processes.

Researchers at the University of Rochester have developed algorithms that show the key atomic features driving the complex chemistry when the nanoscale catalysts turn propane into propylene.

Tabletop particle accelerator could transform medicine and materials science

A particle accelerator that produces intense X-rays could be squeezed into a device that fits on a table, my colleagues and I have found in a new research project.

The way that intense X-rays are currently produced is through a facility called a . These are used to study materials, drug molecules and biological tissues. Even the smallest existing synchrotrons, however, are about the size of a football stadium.

Our research, which is published in the journal Physical Review Letters, shows how tiny structures called carbon nanotubes and could generate brilliant X-rays on a microchip. Although the device is still at the concept stage, the development has the potential to transform medicine, and other disciplines.

Angstrom-level imaging and 2D surfaces allow real-time tracking and steering of DNA

Pictures of DNA often look very tidy—the strands of the double helix neatly wind around each other, making it seem like studying genetics should be relatively straightforward. In truth, these strands aren’t often so perfectly picturesque. They are constantly twisting, bending, and even being repaired by minuscule proteins. These are movements on the nanoscale, and capturing them for study is extremely challenging. Not only do they wriggle about, but the camera’s fidelity must be high enough to focus on the tiniest details.

Researchers from the University of Illinois Urbana-Champaign (U. of I.) have been working on resolving a grand challenge for , and more specifically, : how to take a high-resolution image of DNA to facilitate study.

Using a number of compute resources, including NCSA’s Delta, Aleksei Aksimentiev, a professor of physics at U. of I, and Dr. Kush Coshic, formerly a graduate research assistant in the Center for Biophysics and Quantitative Biology and the Beckman Institute for Advanced Science and Technology at U. of I., and currently a postdoctoral fellow at the Max Planck Institute of Biophysics, recently made significant contributions to solving this challenge. They did it by focusing on two specific problems: creating a “camera” that could capture the molecular movement of DNA, and by creating an environment in which they could predictably direct the movement of the DNA strands.

Nanorobots guide stem cells to become bone cells via precise pressure

For the first time, researchers at the Technical University of Munich (TUM) have succeeded in using nanorobots to stimulate stem cells with such precision that they are reliably transformed into bone cells. To achieve this, the robots exert external pressure on specific points in the cell wall. The new method offers opportunities for faster treatments in the future.

Prof. Berna Özkale Edelmann’s nanorobots consist of tiny gold rods and plastic chains. Several million of them are contained in a gel cushion measuring just 60 micrometers, together with a few . Powered and controlled by , the robots, which look like tiny balls, mechanically stimulate the cells by exerting pressure.

“We heat the gel locally and use our system to precisely determine the forces with which the nanorobots press on the cell—thereby stimulating it,” explains the professor of nano-and microrobotics at TUM. This mechanical stimulation triggers biochemical processes in the cell. Ion channels change their properties, and proteins are activated, including one that is particularly important for bone formation.

A Quantum Microscope Reveals Water Breaking Apart

A scheme combining a scanning probe microscope with a quantum sensor can locally trigger water dissociation and observe the elementary steps of such a reaction.

Every experimental technique comes with trade-offs. High-resolution microscopy can pinpoint the positions of individual atoms, yet it typically cannot identify them chemically. Spectroscopy provides chemical information but often only as an averaged signal over a large region. To construct a comprehensive picture of processes at the nanoscale, researchers often resort to combining two or more independent methods. The metaphorical silver bullet would be a single technique that is both local and capable of identifying chemical species as they form and react. Now Wentian Zheng of Peking University and his collaborators have taken an impressive step toward that goal. They have combined two previously separate capabilities—quantum sensing and scanning probe microscopy (SPM)—into a single instrument that can trigger and observe chemical reactions with nanometer resolution [1].

Researchers Shatter “Impassable Barrier” in Camera Technology

AI and nanotechnology converge in a metalens that rivals traditional optics. The discovery promises smaller, smarter imaging systems. Cameras have become a constant presence in daily life. Over the past two centuries, they have evolved from rare inventions into essential tools used across countle

Nano-bio interfaces for electrical and biochemical signal transduction

Nano-bio interfaces enable communication between synthetic materials and biological systems at the nanoscale, with their functionality shaped by material properties, surface chemistry and topography. This Review discusses the key considerations and methods for engineering nano-bio interfaces for bioelectrical signal detection and biochemical signal transduction.

Mutations Lurking in Alternative Proteins May Cause Disease

Although the genetic cause of many diseases have been identified, it’s estimated that as many as 70% of patients with a rare disorder do not know what causes their disease. Millions of people live with rare diseases, and scientists are still searching for the answers to these medical mysteries. Now researchers have developed a different method for analyzing patient genetic data, which may provide clues. These findings, which were reported in Molecular Cell, have highlighted that multiple proteins can often be produced from one gene; the cell can simply interpret the sequence in different ways.

In a basic genetics lesson, a student will learn that proteins are encoded by genes, and that different genes make different proteins. But in reality, the same gene sequence may encode for multiple proteins, and it can be up to the molecular machinery of the cell to decide which of those gene sequences ends up transcribed into a protein. In fact, most genes can code for more than one protein.

Nanoparticles that enhance mRNA delivery could reduce vaccine dosage and costs

A new delivery particle developed at MIT could make mRNA vaccines more effective and potentially lower the cost per vaccine dose.

In studies in mice, the researchers showed that an mRNA influenza vaccine delivered with their new lipid nanoparticle could generate the same immune response as mRNA delivered by nanoparticles made with FDA-approved materials, but at around 1/100 the dose.

“One of the challenges with mRNA vaccines is the cost,” says Daniel Anderson, a professor in MIT’s Department of Chemical Engineering and a member of MIT’s Koch Institute for Integrative Cancer Research and Institute for Medical Engineering and Science (IMES).

/* */