Menu

Blog

Archive for the ‘nanotechnology’ category

Nov 22, 2024

Chiral Response of Achiral Meta-Atoms

Posted by in categories: nanotechnology, particle physics

Contrary to conventional wisdom, a lattice of engineered nanoparticles called meta-atoms can have a chiral optical response even when each meta-atom is not chiral.

Nov 21, 2024

Physicists develop new method to visualize magnetic nanostructures with high resolution

Posted by in categories: energy, nanotechnology, physics

A new method enables researchers to analyze magnetic nanostructures with a high resolution. It was developed by researchers at Martin Luther University Halle-Wittenberg (MLU) and the Max Planck Institute of Microstructure Physics in Halle.

The new method achieves a resolution of around 70 nanometers, whereas normal light microscopes have a resolution of just 500 nanometers. This result is important for the development of new, energy-efficient storage technologies based on spin electronics. The team reports on its research in the current issue of the journal ACS Nano.

Normal optical microscopes are limited by the wavelength of light and details below around 500 nanometers cannot be resolved. The new method overcomes this limit by utilizing the anomalous Nernst effect (ANE) and a metallic nano-scale tip. ANE generates an electrical voltage in a magnetic metal that is perpendicular to the magnetization and a .

Nov 21, 2024

Ultra-compact optical design enhances virtual and augmented reality device cameras

Posted by in categories: augmented reality, drones, mobile phones, nanotechnology, virtual reality

Researchers from Seoul National University College of Engineering announced they have developed an optical design technology that dramatically reduces the volume of cameras with a folded lens system utilizing “metasurfaces,” a next-generation nano-optical device.

By arranging metasurfaces on the so that light can be reflected and moved around in the glass substrate in a folded manner, the researchers have realized a with a thickness of 0.7mm, which is much thinner than existing refractive lens systems. The research was published on Oct. 30 in the journal Science Advances.

Traditional cameras are designed to stack multiple glass lenses to refract light when capturing images. While this structure provided excellent high-quality images, the thickness of each lens and the wide spacing between lenses increased the overall bulk of the camera, making it difficult to apply to devices that require ultra-compact cameras, such as virtual and augmented reality (VR-AR) devices, smartphones, endoscopes, drones, and more.

Nov 20, 2024

Local actuation of organoids by magnetic nanoparticles

Posted by in categories: biotech/medical, genetics, nanotechnology, neuroscience

Tissues take shape during development through a series of morphogenetic movements guided by local cell-scale forces. While current in vitro approaches subjecting tissues to homogenous stresses, it is currently no possible to recapitulate highly local spatially varying forces. Here we develop a method for local actuation of organoids using embedded magnetic nanoparticles. Sequential aggregation of magnetically labelled human pluripotent stem cells followed by actuation by a magnetic field produces localized magnetic clusters within the organoid. These clusters impose local mechanical forces on the surrounding tissue in response to applied global magnetic fields. We show that precise, spatially defined actuation provides short-term mechanical tissue perturbations as well as long-term cytoskeleton remodeling. We demonstrate that local magnetically-driven actuation guides asymmetric growth and proliferation, leading to enhanced patterning in human neural organoids. We show that this approach is applicable to other model systems by observing polarized patterning in paraxial mesoderm organoids upon local magnetic actuation. This versatile approach allows for local, controllable mechanical actuation in multicellular constructs, and is widely applicable to interrogate the role of local mechanotransduction in developmental and disease model systems.

The authors have declared no competing interest.

Nov 20, 2024

Nanorobots move closer to clinical trials with new model that helps them navigate through the bloodstream

Posted by in categories: biotech/medical, health, mathematics, nanotechnology, robotics/AI

From repairing deadly brain bleeds to tackling tumors with precise chemotherapy, micro/nano-robots (MNRs) are a promising, up-and-coming tool that have the power to substantially advance health care. However, this tool still has difficulty navigating within the human body—a limitation that has prevented it from entering clinical trials.

Mathematical models are crucial to the optimal design and navigation of MNRs, but the are inadequate. Now, new, promising research from the University of Saskatchewan (USask) may allow MNRs to overcome the limitations that previously prevented their widespread use.

USask College of Engineering professor Dr. Chris Zhang (Ph. D.) and two Ph.D. students (Lujia Ding, N.N Hu) along with two USask alumni (Dr. Bing Zhang (Ph. D.), Dr. R. Y. Yin (Ph. D.)) are the first team to develop a highly accurate mathematical model that optimizes the design of MNRs which improves their navigation, allowing them to travel efficiently through the bloodstream. Their work was recently published in Nature Communications.

Nov 19, 2024

Electron imaging reveals the vibrant colors of the outermost electron layer

Posted by in categories: chemistry, nanotechnology, particle physics

Surfaces play a key role in numerous chemical reactions, including catalysis and corrosion. Understanding the atomic structure of the surface of a functional material is essential for both engineers and chemists. Researchers at Nagoya University in Japan used atomic-resolution secondary electron (SE) imaging to capture the atomic structure of the very top layer of materials to better understand the differences from its lower layers. The researchers published their findings in the journal Microscopy.

Some materials exhibit “surface reconstruction,” where the surface atoms are organized differently from the interior atoms. To observe this, especially at the atomic level, surface-sensitive techniques are needed.

Traditionally, scanning (SEM) has been an effective tool to examine nanoscale structures. SEM works by scanning a sample with a focused electron beam and capturing the SEs emitted from the surface. SEs are typically emitted from a below the surface, making it difficult to observe phenomena like surface reconstruction, especially if only a single atomic layer is involved.

Nov 18, 2024

Machine learning and supercomputer simulations predict interactions between gold nanoparticles and blood proteins

Posted by in categories: biotech/medical, chemistry, nanotechnology, robotics/AI, supercomputing

Researchers in the Nanoscience Center at the University of Jyväskylä, Finland, have used machine learning and supercomputer simulations to investigate how tiny gold nanoparticles bind to blood proteins. The studies discovered that favorable nanoparticle-protein interactions can be predicted from machine learning models that are trained from atom-scale molecular dynamics simulations. The new methodology opens ways to simulate the efficacy of gold nanoparticles as targeted drug delivery systems in precision nanomedicine.

Hybrid nanostructures between biomolecules and inorganic nanomaterials constitute a largely unexplored field of research, with the potential for novel applications in bioimaging, biosensing, and nanomedicine. Developing such applications relies critically on understanding the dynamical properties of the nano–bio interface.

Modeling the properties of the nano-bio interface is demanding since the important processes such as electronic charge transfer, or restructuring of the biomolecule surface can take place in a wide range of length and time scales, and the atomistic simulations need to be run in the appropriate aqueous environment.

Nov 18, 2024

Intelciety: Intelligent Society. Are we up for the challenge?. The book “Intelciety. Intelligent Society. Are We Ready for the Challenge?” explores th

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Join us at.

#AI #ExponentialTechnologies


The book “Intelciety. Intelligent Society. Are We Ready for the Challenge?” explores the profound changes that artificial intelligence (AI) and other emerging technologies are causing in modern society. Vicente Ferreira da Silva addresses how these technologies are transforming various fields, from medicine and biotechnology to robotics and nanotechnology, and questions whether we are truly prepared to deal with these advances.

Nov 16, 2024

The Secrets of Life’s Most Essential Molecule: Scientists Unravel Water’s Mysterious Anomalies

Posted by in categories: biotech/medical, chemistry, nanotechnology, neuroscience

Water, a molecule essential for life, exhibits unusual properties—referred to as anomalies—that define its behavior. Despite extensive study, many mysteries remain about the molecular mechanisms underlying these anomalies that make water unique. Deciphering and replicating this distinctive behavior across various temperature ranges remains a significant challenge for the scientific community.

Now, a study presents a new theoretical model capable of overcoming the limitations of previous methodologies to understand how water behaves in extreme conditions. The paper, featured on the cover of The Journal of Chemical Physics, is led by Giancarlo Franzese and Luis Enrique Coronas, from the Faculty of Physics and the Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB).

The study not only broadens our understanding of the physics of water, but also has implications for technology, biology and biomedicine, in particular for addressing the treatment of neurodegenerative diseases and the development of advanced biotechnologies.

Nov 15, 2024

UChicago scientists develop new nanomedicine approach to improve cancer treatment

Posted by in categories: biotech/medical, nanotechnology

Researchers at the University of Chicago Medicine Comprehensive Cancer Center have developed a nanomedicine that increases the penetration and accumulation of chemotherapy drugs in tumor tissues and effectively kills cancer cells in mice.

The study, published in Science Advances, addresses a…


Research effectively used nanoparticles to deliver chemo drugs directly to tumors in mice.

Continue reading “UChicago scientists develop new nanomedicine approach to improve cancer treatment” »

Page 1 of 30712345678Last