Menu

Blog

Archive for the ‘nanotechnology’ category

Oct 10, 2024

Retractions begin for chemist found to have faked data in 42 papers

Posted by in category: nanotechnology

A nanotube researcher in Japan has earned 13 retractions, with more to come, after an extensive investigation by the country’s National Institute of Advanced Industrial Science and Technology (AIST) revealed widespread misconduct in his work.

AIST’s investigation found Naohiro Kameta, senior principal researcher at the Nanomaterials Research Institute located in AIST’s Ibaraki campus, fabricated and falsified dozens of studies. He was apparently dismissed from his role following the findings.

The institute first learned of the problems in Kameta’s work in November 2022, according to a translated version of the investigation report. Initially, they looked into five papers, but eventually expanded their scrutiny to 61 articles on which Kameta was the lead or responsible author.

Oct 9, 2024

ONE microscopy: from molecule to 3D structure with conventional microscopy

Posted by in categories: biotech/medical, nanotechnology, robotics/AI

Researchers at the University Medical Center Göttingen (UMG), Germany, have developed a new method that makes it possible for the first time to image the three-dimensional shape of proteins with a conventional microscope. Combined with artificial intelligence, One-step Nanoscale Expansion (ONE) microscopy enables the detection of structural changes in damaged or toxic proteins in human samples. Diseases such as Parkinson’s disease, which are based on protein misfolding, could thus be detected and treated at an early stage.

ONE microscopy was named one of the “seven technologies to watch in 2024” by the journal Nature and was recently published in the renowned journal Nature Biotechnology (“One-step nanoscale expansion microscopy reveals individual protein shapes”).

Artistic impression of the first protein structure of the GABAA receptor solved by ONE microscopy. (Image: Shaib/Rizzoli, umg/mbexc)

Oct 8, 2024

Using DNA to make nanoelectronics

Posted by in categories: biotech/medical, engineering, nanotechnology

To realize the full potential of DNA nanotechnology in nanoelectronics applications requires addressing a number of scientific and engineering challenges: how to create and manipulate DNA nanostructures? How to use them for surface patterning and integrating heterogeneous materials at the nanoscale? And how to use these processes to produce electronic devices at lower cost and with better performance? These topics are the focus of a recent reviewarticle.

Oct 8, 2024

Project Starship: Materials Engineering Challenges in Science Fiction

Posted by in categories: engineering, nanotechnology, space travel

Part of the delight in reading science fiction is seeing how real science can be extrapolated to envision future technologies, whether here on Earth or in extraterrestrial environments. Starships are a ubiquitous presence in science fiction and a prototypical example of technology that can stimulate the imagination of future scientists and engineers. As a materials scientist, I am particularly intrigued by the role of various materials (metals, ceramics, glasses, polymers, nanomaterials, etc.) in building the starships of tomorrow.

The purpose of this science-meets-science fiction initiative, which we are calling Project Starship, is to deepen the connection between the scientific and science fiction communities, helping to stimulate new interest in both fields. To kick off this series of articles, Grimdark Magazine reached out to three leading voices in dark science fiction to explore the materials required for designing the starships from within their fictional universes. First up is Graham McNeill, a British novelist best known for his Warhammer 40k novels, including Nightbringer. Next is Richard Swan, critically acclaimed author of the dark science fiction trilogy, The Art of War. Finally, Essa Hansen is author of the dark science fiction series, The Graven, which begins with the critically acclaimed Nophek Gloss.

The Anatomy of a Starship.

Oct 8, 2024

On-demand nanoengineering boosts materials for advanced memory storage

Posted by in categories: computing, engineering, nanotechnology, neuroscience, particle physics

Next-generation technologies, such as leading-edge memory storage solutions and brain-inspired neuromorphic computing systems, could touch nearly every aspect of our lives — from the gadgets we use daily to the solutions for major global challenges. These advances rely on specialized materials, including ferroelectrics — materials with switchable electric properties that enhance performance and energy efficiency.

A research team led by scientists at the Department of Energy’s Oak Ridge National Laboratory has developed a novel technique for creating precise atomic arrangements in ferroelectrics, establishing a robust framework for advancing powerful new technologies. The findings are published in Nature Nanotechnology (“On-demand nanoengineering of in-plane ferroelectric topologies”).

“Local modification of the atoms and electric dipoles that form these materials is crucial for new information storage, alternative computation methodologies or devices that convert signals at high frequencies,” said ORNL’s Marti Checa, the project’s lead researcher. “Our approach fosters innovations by facilitating the on-demand rearrangement of atomic orientations into specific configurations known as topological polarization structures that may not naturally occur.” In this context, polarization refers to the orientation of small, internal permanent electric fields in the material that are known as ferroelectric dipoles.

Oct 8, 2024

Exploring the frontiers of neuromorphic engineering: A journey into brain-inspired computing

Posted by in categories: information science, nanotechnology, neuroscience, robotics/AI

Neuromorphic engineering is a cutting-edge field that focuses on developing computer hardware and software systems inspired by the structure, function, and behavior of the human brain. The ultimate goal is to create computing systems that are significantly more energy-efficient, scalable, and adaptive than conventional computer systems, capable of solving complex problems in a manner reminiscent of the brain’s approach.

This interdisciplinary field draws upon expertise from various domains, including neuroscience, computer science, electronics, nanotechnology, and materials science. Neuromorphic engineers strive to develop computer chips and systems incorporating artificial neurons and synapses, designed to process information in a parallel and distributed manner, akin to the brain’s functionality.

Key challenges in neuromorphic engineering encompass developing algorithms and hardware capable of performing intricate computations with minimal energy consumption, creating systems that can learn and adapt over time, and devising methods to control the behavior of artificial neurons and synapses in real-time.

Oct 5, 2024

Science Made Simple: What Are Light Sources?

Posted by in categories: biotech/medical, nanotechnology, science

Light sources, a form of particle accelerator, produce powerful beams of X-rays and other spectrums, enabling scientists to peer into the microscopic structure of materials without physically altering them.

These machines differ from other accelerators as they use oscillating magnetic fields to generate light directly. They play a crucial role across various scientific fields, from studying atomic structures with hard X-rays to examining electronic structures with terahertz waves.

Light sources are a type of particle accelerator that produce powerful beams of X-rays, ultra-violet, or infrared light. These beams are similar to how holding an envelope in front of a bright light can reveal something about what’s inside the envelope. But by using special types of light vastly more powerful than the X-ray machine in a doctor’s office, these light sources help scientists see inside matter. It’s like seeing inside an envelope without opening it. This gives scientists the power to reveal how materials behave at microscopic or nanoscale sizes as well as at ultrafast speeds.

Oct 4, 2024

Beyond ‘one pore at a time’: New method of generating multiple, tunable nanopores

Posted by in categories: engineering, nanotechnology

But these exciting applications have been limited in part by the tedious process of tunneling individual sub-nanometer pores one by one.

“If we are to ever scale up 2D material membranes to be relevant for applications outside the laboratory, the ‘one at a time’ method just isn’t feasible,” said recent UChicago Pritzker School of Molecular Engineering (PME) Ph.D. graduate Eli Hoenig. “But, even within the confines of laboratory experiment, a nanoporous membrane provides significantly larger signals than a single pore, increasing the sensitivity.”

Hoenig is first author of a paper recently published in Nature Communications that found a novel path around this longstanding problem. Under PME Asst. Prof. Chong Liu, the team created a new method of pore generation that builds materials with intentional weak spots, then applies a remote electric field to generate multiple nanoscale pores all at once.

Oct 4, 2024

New materials and techniques show promise for microelectronics and quantum technologies

Posted by in categories: computing, nanotechnology, particle physics, quantum physics, solar power, sustainability

The next generation of handheld devices requires a novel solution. Spintronics, or , is a revolutionary new field in condensed-matter physics that can increase the memory and logic processing capability of nano-electronic devices while reducing power consumption and production costs. This is accomplished by using inexpensive materials and the magnetic properties of an electron’s spin to perform memory and logic functions instead of using the flow of electron charge used in typical electronics.

New work by Florida State University scientists is propelling spintronics research forward.

Professors Biwu Ma in the Department of Chemistry and Biochemistry and Peng Xiong in the Department of Physics work with low-dimensional organic metal halide hybrids, a new class of hybrid materials that can power optoelectronic devices like solar cells, light-emitting diodes, or LEDs and photodetectors.

Sep 30, 2024

Researchers witness nanoscale water formation in real time

Posted by in category: nanotechnology

“It’s a known phenomenon, but it was never fully understood,” said Yukun Liu, the study’s first author and a Ph.D. candidate in Dravid’s laboratory. “Because you really need to be able to combine the direct visualization of water generation and the structure analysis at the atomic scale in order to figure out what’s happening with the reaction and how to optimize it.”

But viewing the process with atomic precision was simply impossible—until nine months ago. In January 2024, Dravid’s team unveiled a novel method to analyze gas molecules in real time. Dravid and his team developed an ultra-thin glassy membrane that holds gas molecules within honeycomb-shaped nanoreactors, so they can be viewed within high-vacuum transmission electron microscopes.

With the new technique, previously published in Science Advances, researchers can examine samples in atmospheric pressure gas at a resolution of just 0.102 nanometers, compared to a 0.236-nanometer resolution using other state-of-the-art tools. The technique also enabled, for the first time, concurrent spectral and reciprocal information analysis.

Page 1 of 30312345678Last