Toggle light / dark theme

Long-term radio observations probe a relativistic binary pulsar system

Astronomers have analyzed the data from long-term radio observations of a binary pulsar known as PSR J1906+0746. Results of the new study, published February 5 on the arXiv pre-print server, deliver important information regarding the nature of this system.

Pulsars are highly magnetized, rotating neutron stars emitting a beam of electromagnetic radiation. They are usually detected in the form of short bursts of radio emission; however, some of them are also observed via optical, X-ray, and gamma-ray telescopes.

A possible ice-cold Earth discovered in the archives of the retired Kepler Space Telescope

Scientists continue to mine data gathered by NASA’s Kepler Space Telescope, retired in 2018, and continue to turn up surprises. A new paper reveals the latest: a possible rocky planet slightly larger than Earth, orbiting a sun-like star about 146 light-years away. The candidate planet, HD 137010b, might be remarkably similar to Earth, but it has one potentially big difference: It could be colder than perpetually frozen Mars.

A promising Earth-sized exoplanet emerges An international science team published a paper on the discovery, “A Cool Earth-sized Planet Candidate Transiting a Tenth Magnitude K-dwarf From K2,” in The Astrophysical Journal Letters on Jan. 27, 2026. The team was led by astrophysics Ph.D. student Alexander Venner of the University of Southern Queensland, Toowoomba, Australia, now a postdoctoral researcher at the Max Planck Institute for Astronomy, Heidelberg, Germany.

The orbital period of the planet—listed as a “candidate” pending further confirmation—is likely to be similar to Earth’s, around one year. Planet HD 137,010 b also might fall just within the outer edge of its star’s “habitable zone,” the orbital distance that could allow liquid water to form on the planet’s surface under a suitable atmosphere.

Scientists Continue to Trace the Origin of the Mysterious “Amaterasu” Cosmic Ray Particle

When the Amaterasu particle entered Earth’s atmosphere, the TAP array in Utah recorded an energy level of more than 240 exa-electronvolts (EeV). Such particles are exceedingly rare and are thought to originate in some of the most extreme cosmic environments. At the time of its detection, scientists were not sure if it was a proton, a light atomic nucleus, or a heavy (iron) atomic nucleus. Research into its origin pointed toward the Local Void, a vast region of space adjacent to the Local Group that has few known galaxies or objects.

This posed a mystery for astronomers, as the region is largely devoid of sources capable of producing such energetic particles. Reconstructing the energy of cosmic-ray particles is already difficult, making the search for their sources using statistical models particularly challenging. Capel and Bourriche addressed this by combining advanced simulations with modern statistical methods (Approximate Bayesian Computation) to generate three-dimensional maps of cosmic-ray propagation and their interactions with magnetic fields in the Milky Way.

Cognitive scientist explains how we ‘see’ what isn’t real

Imagine this: A person walks into a room and knocks a ball off a table.

Did you imagine the gender of the person? The color of the ball? The position of the person relative to the ball?

Yes and no, says cognitive scientist Tomer Ullman, the Morris Kahn Associate Professor of Psychology, who with Halely Balaban recently published a paper titled “The Capacity Limits of Moving Objects in the Imagination.” If you’re like most people, you probably thought about some of these things, but not others. People build mental imagery hierarchically, starting with the ideas of “person,” “room,” “ball,” and “table,” then placing them in relation to one another in space, and only later filling in details like color.

“Our imaginations are actually patchwork and fuzzy and not filled in,” he said. His theory: Your mind’s eye might be lazier than you think. But that’s not necessarily a bad thing. “You leave things out until you need them.”

For the latest installment of “One Word Answer,” we asked Ullman to elaborate further on the current scientific thinking behind “imagination.”


Less like a picture, more like a video game? “Our imaginations are actually patchwork and fuzzy and not filled in,” says Tomer Ullman.

Time crystals could become accurate and efficient timekeepers

Time crystals could one day provide a reliable foundation for ultra-precise quantum clocks, new mathematical analysis has revealed. Published in Physical Review Letters, the research was led by Ludmila Viotti at the Abdus Salam International Center for Theoretical Physics in Italy. The team shows that these exotic systems could, in principle, offer higher timekeeping precision than more conventional designs, which rely on external excitations to generate reliably repeating oscillations.

In physics, a crystal can be defined as any system that hosts a repeating pattern in its microscopic structure. In conventional crystals, this pattern repeats in space—but more exotic behavior can emerge in materials whose configurations repeat over time. Known as “time crystals,” these systems were first demonstrated experimentally in 2016. Since then, researchers have been working to understand the full extent of their possible applications.

Why you hardly notice your blind spot: New tests pit three theories of consciousness

Although humans’ visual perception of the world appears complete, our eyes contain a visual blind spot where the optic nerve connects to the retina. Scientists are still uncertain whether the brain fully compensates for the blind spot or if it causes perceptual distortions in spatial experience. A new study protocol, published in PLOS One, seeks to compare different theoretical predictions on how we perceive space from three leading theories of consciousness using carefully controlled experiments.

The new protocol focuses on three contrasting theories of consciousness: Integrated Information Theory (IIT), Predictive Processing Active Inference (AI), and Predictive Processing Neurorepresentationalism (NREP). Each of the theories have different predictions about the effects that the blind spot’s structural features have on the conscious perception of space, compared to non-blind spot regions.

IIT argues that the quality of spatial consciousness is determined by the composition of a cause-effect structure, and that the perception of space involving the blind spot is altered. On the other hand, AI and NREP argue that perception relies on internal models that reduce prediction errors and that these models adapt to accommodate for the structural deviations resulting from the blind spot. Essentially, this means that perceptual distortions should either appear small or nonexistent in both theories. However, AI and NREP differ in some ways.

Why the Past Still Exists | Leonard Susskind

We usually think of the past as something that no longer exists. It happened — and then it disappeared. But modern physics challenges this intuition in a profound way.

In this video, we explore why the past may still exist — not as memory, but as structure.

Drawing on ideas associated with Leonard Susskind, this documentary examines how relativity and modern spacetime physics reshape our understanding of time. In Einstein’s framework, there is no universal “now.” What is past for one observer may be present or future for another, depending on motion and frame of reference.

This destroys the idea that the past vanishes.

In the spacetime view, the universe is a four-dimensional structure. Events are not erased — they are located. The past is not something that disappeared. It is something that exists in a different region of spacetime.

From this perspective, time does not flow in the way we imagine. The sense of disappearance comes from human experience, not from fundamental physics.

AI captures particle accelerator behavior to optimize machine performance

Keeping high-power particle accelerators at peak performance requires advanced and precise control systems. For example, the primary research machine at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility features hundreds of fine-tuned components that accelerate electrons to 99.999% the speed of light.

The electrons get this boost from radiofrequency waves within a series of resonant structures known as cavities, which become superconducting at temperatures colder than deep space.

These cavities form the backbone of Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF), a unique DOE Office of Science user facility supporting the research of more than 1,650 nuclear physicists from around the globe. CEBAF also holds the distinction of being the world’s first large-scale installation and application of this superconducting radiofrequency (SRF) technology.

Temporal evolution of GRB 240825A afterglow provides insight into origins of optically dark gamma-ray bursts

Researchers from the Yunnan Observatories of the Chinese Academy of Sciences have conducted a new study on the temporal evolution of the afterglow from gamma-ray burst GRB 240825A. The study offers new evidence to better understand the physical environment surrounding gamma-ray bursts and provides insights into the mechanisms that govern their afterglow emission. The findings were recently published in The Astrophysical Journal.

Long-duration gamma-ray bursts (LGRBs) are widely believed to form from the core collapse of massive stars, usually occurring in dense star-forming regions. NASA’s Swift satellite detected GRB 240825A on August 25, 2024, and observed an unusually bright optical counterpart.

Early measurements yielded an X-ray afterglow spectral index of 0.79 and a significantly softer optical afterglow spectral index of 2.48, compared with a typical value near 1. Under standard models, a gamma-ray burst is classified as “optically dark” when its observed optical afterglow flux falls below the level predicted from its X-ray spectral index.

/* */