Toggle light / dark theme

New microscopy technique preserves the cell’s natural conditions

Researchers at Istituto Italiano di Tecnologia (IIT-Italian Institute of Technology) have developed an innovative microscopy technique capable of improving the observation of living cells. The study, published in Optics Letters, paves the way for a more in-depth analysis of numerous biological processes without the need for contrast agents. The next step will be to enhance this technique using artificial intelligence, opening the door to a new generation of optical microscopy methods capable of combining direct imaging with innovative molecular information.

The study was conducted under the guidance of Alberto Diaspro, Research Director of the Nanoscopy Unit and Scientific Director of the Italian Nikon Imaging Center at IIT, by Nicolò Incardona (first author) and Paolo Bianchini.

Chemist proposes shared ‘model proteins’ to improve reproducibility in protein science

Protein scientists could improve reproducibility and coordination across the field by rallying around a small, shared set of “model proteins,” according to a new Perspective by Connecticut College chemist Marc Zimmer.

The article appears in the 40th-anniversary issue of Protein Engineering, Design and Selection. Zimmer argues that protein science is ready to adopt a framework similar to the one that transformed research using model organisms such as fruit flies, mice, yeast and C. elegans.

Those organisms became powerful research tools not only because their biology is conserved, Zimmer notes, but because scientific communities coordinated around them. Shared protocols, databases and benchmarks made results easier to compare, reproduce and build upon.

Psychopathic women are more likely to use physical aggression

New research provides evidence that women with high levels of psychopathy are more likely to engage in physical, verbal, and indirect aggression against other women. The study indicates that while women generally favor covert competitive tactics, those with specific dark personality traits may bypass these social norms to target rivals directly. These findings were published in Evolutionary Behavioral Sciences.

Evolutionary theory suggests that humans compete for access to romantic partners through a process known as intrasexual selection. This competition can manifest in various ways depending on the sex of the individual. For women, biological factors related to reproduction play a significant role in shaping these competitive strategies.

The theory of obligatory parental investment notes that women face higher biological costs in reproduction than men. Because women carry the fetus during gestation and often care for infants, they must protect their physical well-being to ensure the survival of their offspring. This biological reality implies that direct physical confrontation is a high-risk strategy for women.

Physics of foam strangely resembles AI training

Foams are everywhere: soap suds, shaving cream, whipped toppings and food emulsions like mayonnaise. For decades, scientists believed that foams behave like glass, their microscopic components trapped in static, disordered configurations.

Now, engineers at the University of Pennsylvania have found that foams actually flow ceaselessly inside while holding their external shape. More strangely, from a mathematical perspective, this internal motion resembles the process of deep learning, the method typically used to train modern AI systems.

The discovery could hint that learning, in a broad mathematical sense, may be a common organizing principle across physical, biological and computational systems, and provide a conceptual foundation for future efforts to design adaptive materials. The insight could also shed new light on biological structures that continuously rearrange themselves, like the scaffolding in living cells.

Cells Use ‘Bioelectricity’ To Coordinate and Make Group Decisions

According to the new results, as epithelial tissue grows, cells are packed more tightly together, which increases the electrical current flowing through each cell’s membrane. A weak, old, or energy-starved cell will struggle to compensate, triggering a response that sends water rushing out of the cell, shriveling it up and marking it for death. In this way, electricity acts like a health checkup for the tissue and guides the pruning process.

“This is a very interesting discovery — finding that bioelectricity is the earliest event during this cell-extrusion process,” said the geneticist GuangJun Zhang of Purdue University, who studies bioelectrical signals in zebra fish development and wasn’t involved in the study. “It’s a good example of how a widening electronic-signaling perspective can be used in fundamental biology.”

The new discovery adds to the growing assortment of bioelectrical phenomena that scientists have discovered playing out beyond the nervous system, from bacteria swapping signals within a biofilm to cells following electric fields during embryonic development. Electricity increasingly appears to be one of biology’s go-to tools for coordinating and exchanging information between all kinds of cells.

A protein found in the GI tract can neutralize many bacteria

The mucosal surfaces that line the body are embedded with defensive molecules that help keep microbes from causing inflammation and infections. Among these molecules are lectins—proteins that recognize microbes and other cells by binding to sugars found on cell surfaces.

One of these lectins, MIT researchers have found, has broad-spectrum antimicrobial activity against bacteria found in the GI tract. This lectin, known as intelectin-2, binds to sugar molecules found on bacterial membranes, trapping the bacteria and hindering their growth. Additionally, it can crosslink molecules that make up mucus, helping to strengthen the mucus barrier.

“What’s remarkable is that intelectin-2 operates in two complementary ways. It helps stabilize the mucus layer, and if that barrier is compromised, it can directly neutralize or restrain bacteria that begin to escape,” says Laura Kiessling, the Novartis Professor of Chemistry at MIT and the senior author of the study.

Strange New Side of Viral Evolution Revealed on the International Space Station

Viruses that infect bacteria can still do their job in microgravity, but space changes the rules of the fight.

In a new experiment conducted aboard the International Space Station, scientists found that viruses which infect bacteria can still successfully infect E. coli under near-weightless microgravity conditions. While infection still occurred, the interaction between viruses and bacteria unfolded differently than it does on Earth. The research, led by Phil Huss of the University of Wisconsin-Madison, U.S.A., was published today (January 13th) in the open-access journal PLOS Biology.

A microscopic arms race in an unusual environment.

Alkaline-loving microbes could help safeguard nuclear waste buried deep underground for thousands of years

Billions of alkaline-loving microbes could offer a new way to protect nuclear waste buried deep underground. This approach overcomes the limitations of current cement barriers, which can crack or break down over time.

One of the best ways to keep nuclear waste out of harm’s way is to bury it in geological disposal facilities. These are purpose-built containers in tunnels and vaults hundreds of meters underground. Cement is used to provide structural support, seal gaps and encapsulate waste containers. While cement is a strong material, groundwater eventually reacts with it, forming microscopic cracks and pores through which radiation could escape.

This problem is made worse because traditional cement is extremely alkaline (pH greater than 12) and corrosive, which can weaken nearby protective layers such as clay barriers, potentially compromising a facility.

The 6 Steps to Reach the Singularity. Ep #114

The 6 steps to reach the singularity.

## The technological singularity, a point where AI surpasses human intelligence, is predicted to occur by 2045 and will profoundly transform humanity, requiring proactive adaptation and integration of AI into daily life ## ## Questions to inspire discussion.

Advancing AI and Machine Learning.

🧠 Q: How can we progress towards autonomous machine learning? A: Shift from supervised to unsupervised learning, enabling AI to identify patterns and make predictions without labeled data, thus advancing towards independent learning and improvement.

🤖 Q: What is the significance of achieving Artificial General Intelligence (AGI)? A: AGI represents the pinnacle of AI development, capable of matching or surpassing human-level intelligence across various domains, potentially leading to an unprecedented technological growth boom.

🧬 Q: What are initial steps towards neural augmentation? A: Develop brain-interfacing technologies to enhance specific aspects of human cognition, such as implants or non-invasive devices for improving memory, processing speed, or sensory perception.

/* */