Toggle light / dark theme

Zinc and hydroxyapatite co-localize during in vitro E. coli biofilms mineralization

Biofilms are biological materials that form as bacteria protect themselves from environmental challenges secreting extracellular matrix and accumulating minerals under specific conditions. To understand biofilm formation and mineralization, we grew Escherichia coli on agar plates containing a nutritive and mineralizing medium. Previous studies showed that the alkaline phosphatase (ALP) present in E. coli biofilms leads to hydroxyapatite precipitation in such conditions. Here, we introduced X-ray fluorescence techniques as powerful tools to analyze the composition of mineralized biofilms in two and three dimensions. In addition to calcium and phosphate, we found that the traces of zinc introduced via the nutrients and bacteria, also accumulates in the mineralized regions.

How sleep loss can damage your brain’s wiring

Sleep loss damages the fatty insulation protecting the nerve cells in our brain, according to a paper published in the journal Proceedings of the National Academy of Sciences. The research also explains why we often feel slow and groggy after a bad night’s sleep.

Most of us will experience sleep loss at one time or another and suffer the consequences of tiredness and slower reactions the next day. The biological mechanisms for these are not well understood and often attributed to tired or overworked neurons. Researchers led by scientists at the University of Camerino in Italy thought there might be other factors at play, so they decided to investigate.

Speaking multiple languages appears to keep the brain younger for longer

A study of 86,000 adults across Europe links multilingualism to slower biological aging. Researchers found that people who speak multiple languages tend to maintain better cognitive function and physical health than their monolingual peers.

Fruit fly ‘Fox’ neurons show how brains assign value to food

Why do we sometimes keep eating even when we’re full and other times turn down food completely? Why do we crave salty things at certain times, and sweets at other times? The answers, according to new neuroscience research at the University of Delaware, may lie in a tiny brain in an organism you might not expect.

Lisha Shao, assistant professor in the Department of Biological Sciences in the College of Arts and Sciences, has uncovered a neural network in the brains of fruit flies that represents a very early step in how the brain decides—minute by minute—whether a specific food is worth eating. The work was published in the journal Current Biology.

“Our goal is to understand how the brain assigns value—why sometimes eating something is rewarding and other times it’s not,” Shao said.

Refractive-index microscope measures a sample’s optical properties with pinpoint accuracy

In this way, and almost by chance, researchers at TU Wien developed a novel microscopy technique that allows the refractive index of biological samples to be measured at a resolution far below what conventional light microscopy theory would seem to allow. Their paper is published in the journal ACS Nano.

The trick behind resolution beyond the wavelength of light

What happens if you try to image two molecules whose separation is smaller than the wavelength of light? You will not see two distinct points, but a single blurred spot of light—the images of the two molecules overlap, no matter how precise the microscope is.

New Study Reveals How Nanoplastics Make Bacteria More Dangerous

Nanoplastics already raise fears because people can ingest them directly. Now scientists say these tiny particles can create a different kind of danger when they end up in water: they can help bacteria become tougher and harder to remove.

A study in Water Research led by Virginia Tech’s Jingqiu Liao, working with international collaborators, found that nanoplastics can influence how environmental microbes behave in ways that may indirectly affect human health. The concern is not just what the particles might do in the body, but what they might encourage in the water systems people rely on every day.

“It is very important to better understand the adverse effects of the nanoplastics on human health, and not just in humans but also in the environment, which indirectly influences human health,” said Liao, assistant professor of civil and environmental engineering. “The nanoplastics can make the antimicrobial-resistant pathogens better survive, which could be harmful to the environment and would have public health implications.”

Native postsynaptic density is a functional condensate formed via phase separation

To obtain direct evidence supporting the theory that the postsynaptic density (PSD) in neuronal synapses is formed via phase separation, Chen et al. purified and characterized the native PSD from the mouse brain. Their results demonstrate that the native PSD has characteristic features of biological condensates formed via phase separation.

Procrastination in adulthood linked to brain development during adolescence

Procrastination, the tendency to unnecessarily delay or put off tasks even if this will have negative consequences, is a common behavior for many people. While occasionally delaying or putting off bothersome tasks is not necessarily problematic, severe and prolonged procrastination is closely tied to some neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD) and anxiety disorders.

Unveiling patterns in the brain’s structure and genetic factors linked to procrastination could help to reliably uncover this tendency to postpone tasks in affected individuals. This could in turn inform the development of preventative strategies or interventions that tackle procrastination early, before it exacerbates other underlying mental health disorders.

Researchers at the Chinese Academy of Sciences and other institutes in China recently carried out a study aimed at shedding new light on the biological and genetic roots of procrastination. Their paper, published in Molecular Psychiatry, outlines specific patterns in the brain’s structure during adolescence that are linked to procrastination in adulthood.

Novel ‘XFELO’ laser system produces razor-sharp X-ray light

A team of engineers and scientists has shown for the first time that a hard-X-ray cavity can provide net X-ray gain, with X-ray pulses being circulated between crystal mirrors and amplified in the process, much like happens with an optical laser. The result of the proof-of-concept at European XFEL is a particularly coherent, laser-like light of a quality that is unprecedented in the hard X-ray spectrum.

Lasing inside a cavity had been challenging to achieve with short-wavelength X-rays for a variety of reasons, including—on a basic level—that the nature of the light makes it difficult to reflect the beam at large angles. The “XFELO” (short for: X-Ray Free-Electron Laser Oscillator) technique opens new perspectives for scientific investigations, from ultrafast chemical reactions to detailed analyses of the smallest biological structures. The research is published in the journal Nature.

/* */