Menu

Blog

Archive for the ‘particle physics’ category

Dec 8, 2024

Vortex electric field discovery could impact quantum computing

Posted by in categories: computing, nanotechnology, particle physics, quantum physics

A new vortex electric field with the potential to enhance future electronic, magnetic and optical devices has been observed by researchers from City University of Hong Kong (CityUHK) and local partners.

The research, “Polar and quasicrystal vortex observed in twisted-bilayer molybdenum disulfide” published in Science, is highly valuable as it can upgrade the operation of many devices, including strengthening memory stability and computing speed.

With further research, the discovery of the vortex electric field can also impact the fields of quantum computing, spintronics, and nanotechnology.

Dec 7, 2024

Groundbreaking Discoveries About the Higgs Boson Announced

Posted by in categories: futurism, particle physics

The Higgs boson, often dubbed the “God particle,” has been a focal point of physics since its groundbreaking discovery in 2012. This elusive particle plays a crucial role in our understanding of how elementary particles acquire mass, a concept that has puzzled scientists for decades. But the excitement doesn’t stop there. Seven years after its discovery, new findings from researchers at the Max Planck Institute are taking our knowledge of the Higgs boson to an entirely new level. These advancements promise to unravel deeper mysteries of the universe and open doors to future scientific exploration.

To fully appreciate the recent developments in Higgs boson research, it’s important to revisit the concept of this fundamental particle. In the Standard Model of particle physics, the Higgs boson is the particle responsible for giving mass to other particles. But how exactly does this happen? The answer lies in the Higgs field—a sort of invisible “medium” that permeates the universe, even in a vacuum.

Imagine you’re trying to walk through a swimming pool. When the water is still, you move easily, but if the pool were filled with foam, your movements would slow down considerably. The Higgs field operates similarly, with particles gaining mass as they interact with it, much like how a swimmer would find it harder to move through foam. The more a particle interacts with this field, the more mass it acquires, which allows particles to form the building blocks of matter as we know it.

Dec 7, 2024

Huge Experiment Gives First Glimpse of The Internal Structure of a Neutron

Posted by in categories: climatology, particle physics, quantum physics

An experiment more than 10 years in the making has delivered its first glimpse of the hurricane of particles whirring inside subatomic particles called neutrons, laying the groundwork to solve a mystery deep in the heart of matter.

Data from the Central Neutron Detector at the US Department of Energy’s Thomas Jefferson National Accelerator Facility (TJNAF) is already playing a role in describing the quantum map of the neutron’s engine.

“It’s a quite important result for the study of nucleons,” says Silvia Niccolai, a research director at the French National Centre for Scientific Research.

Dec 7, 2024

Liquid water molecules are inherently asymmetric: New insight into the bonds between water molecules

Posted by in category: particle physics

Icebergs float on water because the underlying liquid water has a higher density than the iceberg. Liquid water itself has its highest density at 4°C—one of the so-called anomalies of water, i.e. properties of liquids that are rarely observed for other liquids.

The origins of these anomalies have long been the subject of scientific research. Researchers at the Max Planck Institute for Polymer Research have now discovered another piece to the puzzle to explain the special behavior of water.

Many of the anomalous properties of water can be traced to the special interactions between the individual —the so-called hydrogen bonds. Each water molecule can donate two of these bonds—one from each hydrogen atom—and accept two of them from other, neighboring molecules.

Dec 7, 2024

Observing gain-induced group delay between multiphoton pulses generated in a spontaneous down-conversion source

Posted by in categories: computing, particle physics, quantum physics

Spontaneous parametric down-conversion (SPDC) and spontaneous four-wave mixing are powerful nonlinear optical processes that can produce multi-photon beams of light with unique quantum properties. These processes could be leveraged to create various quantum technologies, including computer processors and sensors that leverage quantum mechanical effects.

Researchers at the National Research Council of Canada and École Polytechnique de Montréal recently carried out a study observing the effects emerging in the SPDC process. Their paper, published in Physical Review Letters, reports the observation of a gain-induced group delay in multi-photon pulses generated in SPDC.

“The inspiration for this paper came from studying a process called SPDC,” Nicolás Quesada, senior author of the paper, told Phys.org. “This is a mouthful to say that certain materials are able to take a violet photon (the particle light is made of) and transform it into two red photons.

Dec 6, 2024

Neutron Stars Illuminate the Hidden Physics of Quark Superconductivity

Posted by in categories: particle physics, space

Requiring consistency between the physics of neutron stars and quark matter leads to the first astrophysical constraint on this exotic phase of matter.

Recent research uses neutron star measurements to place empirical limits on the strength of color superconducting pairing in quark matter, revealing new insights into the physics of the densest visible matter in the universe through astronomical observations.

Color Superconductivity

Dec 6, 2024

AI found a new way to create quantum entanglement

Posted by in categories: particle physics, quantum physics, robotics/AI

In a surprise discovery, researchers found a new way to generate quantum entanglement for particles of light, which could make building quantum information networks easier.

By Karmela Padavic-Callaghan

Dec 6, 2024

Physicists propose a quantum–optomechanical solution to dark-matter detection

Posted by in categories: cosmology, particle physics, quantum physics

An interdisciplinary collaboration between condensed-matter, quantum-optics and particle physicists has the potential to crack the search for low-mass dark matter. The proposed quantum detector builds on EQUS studies of elementary excitations in superfluid helium and advances in opto-mechanics.

Led by EQUS Research Fellow Dr. Chris Baker (UQ), study proposes direct detection of low-mass dark matter via its interactions with confined in an optomechanical cavity.

Optomechanical dark matter instrument for direct detection” was published in Physical Review D in August 2024.

Dec 6, 2024

Quantum Scientists Just Made a Major Breakthrough Using 31 Superconducting Qubits

Posted by in categories: particle physics, quantum physics

Scientists have achieved unprecedented control over quantum transport using a 31-qubit superconducting processor, opening new possibilities for next-generation electronics and thermal management. This approach allows researchers to observe and manipulate quantum particles with extraordinary precision, potentially revolutionizing how we develop future technologies.

The research, led by teams from Singapore and China, marks a significant advance in understanding how particles, energy, and information flow at the quantum level. This breakthrough could accelerate development of more efficient nanoelectronics and thermal management systems.

Dec 6, 2024

3D scans of giant hailstones reveal surprising discoveries that could help predict future storms

Posted by in categories: climatology, particle physics

Hailstones are formed during thunderstorms, when raindrops are propelled into very cold parts of a cloud, where they freeze. Once the particles are heavy enough, gravity pulls them back towards Earth. As they plummet, they grow into hailstones, which can cause injury to people and significant damage to homes and cars.

Scientists have been studying how hailstones grow since the 1960s but doing so meant breaking them in the process. To better understand the anatomy and growth of hailstones, researchers in Catalonia have used computed tomography (CT) scans to examine the giant hailstones that hit the north-east of the Iberian Peninsula during an exceptionally strong thunderstorm in the summer of 2022.

“We show that the CT scanning technique enables the observation of the internal structure of the hailstones without breaking the samples,” said Carme Farnell Barqué, a researcher at the Meteorological Service of Catalonia and lead author of the study published in Frontiers in Environmental Science.

Page 1 of 59812345678Last