Toggle light / dark theme

2D discrete time crystals realized on a quantum computer for the first time

Physical systems become inherently more complicated and difficult to produce in a lab as the number of dimensions they exist in increases—even more so in quantum systems. While discrete time crystals (DTCs) had been previously demonstrated in one dimension, two-dimensional DTCs were known to exist only theoretically. But now, a new study, published in Nature Communications, has demonstrated the existence of a DTC in a two-dimensional system using a 144-qubit quantum processor.

Like regular crystalline materials, DTCs exhibit a kind of periodicity. However, the crystalline materials most people are familiar with have a periodically repeating structure in space, while the particles in DTCs exhibit periodic motion over time. They represent a phase of matter that breaks time-translation symmetry under a periodic driving force and cannot experience an equilibrium state.

“Consequently, local observables exhibit oscillations with a period that is a multiple of the driving frequency, persisting indefinitely in perfectly isolated systems. This subharmonic response represents a spontaneous breaking of discrete time-translation symmetry, analogous to the breaking of continuous spatial symmetry in conventional solid-state crystals,” the authors of the new study explain.

New Study Reveals How Nanoplastics Make Bacteria More Dangerous

Nanoplastics already raise fears because people can ingest them directly. Now scientists say these tiny particles can create a different kind of danger when they end up in water: they can help bacteria become tougher and harder to remove.

A study in Water Research led by Virginia Tech’s Jingqiu Liao, working with international collaborators, found that nanoplastics can influence how environmental microbes behave in ways that may indirectly affect human health. The concern is not just what the particles might do in the body, but what they might encourage in the water systems people rely on every day.

“It is very important to better understand the adverse effects of the nanoplastics on human health, and not just in humans but also in the environment, which indirectly influences human health,” said Liao, assistant professor of civil and environmental engineering. “The nanoplastics can make the antimicrobial-resistant pathogens better survive, which could be harmful to the environment and would have public health implications.”

Study: The infant universe’s “primordial soup” was actually soupy

In its first moments, the infant universe was a trillion-degree-hot soup of quarks and gluons. These elementary particles zinged around at light speed, creating a “quark-gluon plasma” that lasted for only a few millionths of a second. The primordial goo then quickly cooled, and its individual quarks and gluons fused to form the protons, neutrons, and other fundamental particles that exist today.

Physicists at CERN’s Large Hadron Collider in Switzerland are recreating quark-gluon plasma (QGP) to better understand the universe’s starting ingredients. By smashing together heavy ions at close to light speeds, scientists can briefly dislodge quarks and gluons to create and study the same material that existed during the first microseconds of the early universe.

Now, a team at CERN led by MIT physicists has observed clear signs that quarks create wakes as they speed through the plasma, similar to a duck trailing ripples through water. The findings are the first direct evidence that quark-gluon plasma reacts to speeding particles as a single fluid, sloshing and splashing in response, rather than scattering randomly like individual particles.

CERN chief upbeat on funding for new particle collider

Mark Thomson, the new head of Europe’s physics laboratory CERN, voiced confidence Tuesday about raising the billions of dollars needed to build by far the world’s biggest particle accelerator.

CERN, the European Organization for Nuclear Research, seeks to unravel what the universe is made of and how it works.

The planned Future Circular Collider (FCC) would be an electron-positron collider ring with a circumference of 91 kilometers and an average depth of 200 meters.

Framework sets new benchmarks for 3D atom maps in amorphous materials

Researchers at the California NanoSystems Institute at UCLA published a step-by-step framework for determining the three-dimensional positions and elemental identities of atoms in amorphous materials. These solids, such as glass, lack the repeating atomic patterns seen in a crystal. The team analyzed realistically simulated electron-microscope data and tested how each step affected accuracy.

The team used algorithms to analyze rigorously simulated imaging data of nanoparticles—so small they’re measured in billionths of a meter. For amorphous silica, the primary component of glass, they demonstrated 100% accuracy in mapping the three-dimensional positions of the constituent silicon and oxygen atoms, with precision about seven trillionths of a meter under favorable imaging conditions.

While 3D atomic structure determination has a history of more than a century, its application has been limited to crystal structures. Such techniques depend on averaging a pattern that is repeated trillions of times.

The infant universe’s ‘primordial soup’ was actually soupy, study finds

In its first moments, the infant universe was a trillion-degree-hot soup of quarks and gluons. These elementary particles zinged around at light speed, creating a “quark-gluon plasma” that lasted for only a few millionths of a second. The primordial goo then quickly cooled, and its individual quarks and gluons fused to form the protons, neutrons, and other fundamental particles that exist today.

Physicists at CERN’s Large Hadron Collider in Switzerland are recreating quark-gluon plasma (QGP) to better understand the universe’s starting ingredients. By smashing together heavy ions at close to light speeds, scientists can briefly dislodge quarks and gluons to create and study the same material that existed during the first microseconds of the early universe.

Now, a team at CERN led by MIT physicists has observed clear signs that quarks create wakes as they speed through the plasma, similar to a duck trailing ripples through water. The findings are the first direct evidence that quark-gluon plasma reacts to speeding particles as a single fluid, sloshing and splashing in response, rather than scattering randomly like individual particles.

New light-based platform sets the stage for future quantum supercomputers

A light has emerged at the end of the tunnel in the long pursuit of developing quantum computers, which are expected to radically reduce the time needed to perform some complex calculations from thousands of years down to a matter of hours.

A team led by Stanford physicists has developed a new type of “optical cavity” that can efficiently collect single photons, the fundamental particle of light, from single atoms. These atoms act as the building blocks of a quantum computer by storing “qubits”—the quantum version of a normal computer’s bits of zeros and ones. This work enables that process for all qubits simultaneously, for the first time.

In a study published in Nature, the researchers describe an array of 40 cavities containing 40 individual atom qubits as well as a prototype with more than 500 cavities. The findings indicate a way to ultimately create a million-qubit quantum computer network.

Scientists may be approaching a ‘fundamental breakthrough in cosmology and particle physics’ — if dark matter and ’ghost particles’ can interact

Astronomers found evidence that dark matter and neutrinos may interact, hinting at a “fundamental breakthrough” that challenges our understanding of how the universe evolved.

Highly stable Cu₄₅ superatom could transform carbon recycling

After years of trying, scientists have finally created a stable superatom of copper, a long-sought-after chemical breakthrough that could revolutionize how we deal with carbon emissions.

Copper is a cheap and common metal, and because of its ability to bind carbon atoms together (C-C coupling), scientists have wanted to use it to turn carbon dioxide into products like ethylene for plastics and fuels. However, it corrodes or falls apart almost immediately when exposed to air or harsh industrial conditions.

A superatom is a cluster of atoms that behaves like a single atom, but with greater stability. In this new study published in the Journal of the American Chemical Society, scientists from Tsinghua University in Beijing built a nanocluster made from 45 copper atoms (Cu45).

/* */