Toggle light / dark theme

In the quest to take the “forever” out of “forever chemicals,” bacteria might be our ally. Most remediation of per-and polyfluoroalkyl substances (PFAS) involves adsorbing and trapping them, but certain microbes can actually break apart the strong chemical bonds that allow these chemicals to persist for so long in the environment.

Now, a University at Buffalo-led team has identified a strain of bacteria that can break down and transform at least three types of PFAS, and perhaps even more crucially, some of the toxic byproducts of the bond-breaking process.

Published in this month’s issue of Science of the Total Environment, the team’s study found that Labrys portucalensis F11 (F11) metabolized over 90% of perfluorooctane (PFOS) following an exposure period of 100 days. PFOS is one of the most frequently detected and persistent types of PFAS and was designated hazardous by the U.S. Environmental Protection Agency last year.

A major measles alert has been issued for two Australian states.


An urgent measles warning has been issued for two states after a toddler arrived in Australia from Vietnam with the infectious and deadly disease.

The South Australian government issued a warning after being notified of a three-year-old infected with measles travelling from Vietnam on Singapore Airlines flight SQ279, landing in Adelaide about 8.45am on Tuesday January 14.

Over the week, the toddler visited a number of places, including Kmart and Coles supermarket in Ingle Farm Shopping Centre on Wednesday January 15 before attending the Women’s and Children’s Hospital on Friday January 17.

The ability to regulate one’s own food intake is essential to the survival of both humans and other animals. This innate ability ensures that the body receives the nutrients it needs to perform daily activities, without significantly exceeding calorie intake, which could lead to health problems and metabolic disorders.

Past neuroscience studies suggest that the regulation of food intake is supported by specific regions in the brain, including the hypothalamus and caudal nucleus of the solitary tract (cNTS), which is part of the brainstem. This key region in the brainstem is known to integrate originating from the gut and then transform them into adaptive feeding behaviors.

While previous research has highlighted the key role of the cNTS in food intake regulation, the unique contribution of the different neuron subtypes within this brainstem region and the mechanisms by which they regulate feeding remain poorly understood. Better understanding these neuron-specific mechanisms could help to devise more effective therapeutic interventions for obesity and eating disorders.

A team of chemists and agriculture specialists has developed a way to transform urea in wastewater, into percarbamide, which can be used as a fertilizer. In their paper published in the journal Nature Catalysis, the group describes their process and how well the resulting product worked in growing edible crops.

Urine is seen as a source of because it is high in nitrogen and other rich compounds that are good for . Many home gardeners know that urine can be used as a fertilizer both for flower and vegetable gardens—the key is to mix it with a lot of water to prevent burning the plants.

Prior efforts to use urine as a source of fertilizer on a larger scale, however, have proven to be unfeasible due to industrial inefficiencies; it is much easier to use standard methods that involve extracting nitrogen from the air. In this new effort, the researchers have developed a way to use human and animal as a fertilizer for growing edible crops.

The rising trend of early-onset cancers in adults under 50, particularly women, is alarming. Genetic, lifestyle, and environmental factors contribute to this increase. Maintaining a healthy weight, quitting tobacco, avoiding alcohol, consuming fiber-rich foods, using sunscreen, and regular physical activity are small lifestyle changes that can significantly reduce cancer risk.

In future, doctors hope the technology could revolutionise the treatment of conditions such as depression, addiction, OCD and epilepsy by rebalancing disrupted patterns of brain activity.

Jacques Carolan, Aria’s programme director, said: “Neurotechnologies can help a much broader range of people than we thought. Helping with treatment resistant depression, epilepsy, addiction, eating disorders, that is the huge opportunity here. We are at a turning point in both the conditions we hope we can treat and the new types of technologies emerging to do that.”

The trial follows rapid advances in brain-computer-interface (BCI) technology, with Elon Musk’s company Neuralink launching a clinical trial in paralysis patients last year and another study restoring communication to stroke patients by translating their thoughts directly into speech.

Simon Fraser University, the Greek Ministry of Culture, and the University of Bologna have conducted an isotope study on the dietary patterns of Mesolithic and Neolithic humans at Franchthi Cave, Greece. The report confirms a terrestrial-based diet with negligible consumption of marine resources during these periods.

Franchthi Cave, overlooking the Bay of Koilada in the Peloponnese, is one of Greece’s most significant prehistoric sites, spanning nearly 40,000 years of occupation. The site is stunningly beautiful, with a high vaulted arch at the cave entrance inviting visitors into an otherworldly space.

Excavated between 1967 and 1979, it provides a continuous record from the Upper Paleolithic through the Neolithic. The Mesolithic to Neolithic transition is characterized across Europe by the emergence of agriculture and a shift in dietary reliance from marine to terrestrial resources, especially in . Previous isotope studies of Franchthi suggested minimal marine input despite its coastal location.

Researchers at the John Innes Centre have identified a biological mechanism that helps plant roots create a more hospitable environment for beneficial soil microbes. This breakthrough has the potential to promote more sustainable farming practices by reducing the need for synthetic fertilizers.

Most major crops currently rely on nitrate and phosphate fertilizers, but excessive fertilizer use can have harmful environmental consequences. By leveraging the natural, mutually beneficial relationships between plant roots and soil microbes to improve nutrient uptake, it may be possible to significantly cut down on the use of inorganic fertilizers.

Researchers in the group of Dr Myriam Charpentier discovered a mutation in a gene in the legume Medicago truncatula that reprogrammes the signaling capacity of the plant so that it enhances partnerships with nitrogen fixing bacteria called rhizobia and arbuscular mycorrhiza fungi (AMF) which supply roots with phosphorus.

Human faces are becoming shorter, due to changes in our diet, and our smaller jaws mean there is less room for teeth. As a result, most babies are now being born without wisdom teeth.

According to Dr Teghan Lucas, of Flinders University in Adelaide, this indicates that humans are still evolving — and at a rapid rate.

Dr. Lucas and a team of scientists discovered that people are undergoing a kind of “micro-evolution” where evolutionary changes can be noticed over a short period of time. Some of the changes also include weaker jaws, which is likely due to our dependence on fire and processed food more than ever before.

Scientists also found that some people are being born with additional bones in their arms and legs, as well as an extra artery in their arm. They also found that some people are born with abnormal connections of two or more bones in their feet.

T the only study to reach these conclusions. +.