Toggle light / dark theme

From Classical Breeding to Modern Biotechnological Advancement in Horticultural Crops — Trait Improvement and Stress Resilience, volume II

This study puts forward a machine vision-based prediction method to solve the problem regarding the measurement of traits in shiitake mushroom caps during th…

Targeting MXenes for sustainable ammonia production

In a hunt for more sustainable technologies, researchers are looking further into enabling two-dimensional materials in renewable energy that could lead to sustainable production of chemicals such as ammonia, which is used in fertilizer.

This next generation of low-dimensional materials, called MXenes, catalyzes the production of air into ammonia for foods and transportation for high-efficiency energy fertilizers.

MXenes has a wide range of possibilities that allow for highly flexible chemical compositions, offering significant control over their properties.

Devices that pull water out of thin air poised to take off

More than 2 billion people worldwide lack access to clean drinking water, with global warming and competing demands from farms and industry expected to worsen shortages. But the skies may soon provide relief, not in the form of rain but humidity, sucked out of the air by “atmospheric water harvesters.” The devices have existed for decades but typically are too expensive, energy-hungry, or unproductive to be practical.

Now, however, two classes of materials called hydrogels and metal-organic frameworks have touched off what Evelyn Wang, a mechanical engineer at the Massachusetts Institute of Technology (MIT), calls “an explosion of efforts related to atmospheric water harvesting.”

So far, none of the devices can compete with established approaches to augment water supplies, such as desalinating seawater. But some applications—cooling data centers and slaking the thirst of soldiers on the move—could support higher costs until the technology scales up, says Samer Taha, CEO of Atoco, a California-based startup. “There are many applications where atmospheric water harvesting can help.”

New system helps robotic arm navigate using sound instead of vision

A new sensing system called SonicBoom could help agricultural robots navigate cluttered environments where visual sensors struggle.

Developed by researchers at Carnegie Mellon University, SonicBoom uses tiny contact microphones to sense sound and localize objects that a robotic arm touches.

Interestingly, these robots could help farmers harvest crops even in increasingly challenging conditions, such as rising temperatures.

ReSURF: Stretchable, self-healing water quality sensor enables ultrafast surveillance

Clean, safe water is vital for human health and well-being. It also plays a critical role in our food security, supports high-tech industries, and enables sustainable urbanization. However, detecting contamination quickly and accurately remains a major challenge in many parts of the world.

A new device developed by researchers at the National University of Singapore (NUS) has the potential to significantly advance water quality monitoring and management.

Taking inspiration from the biological function of the oily protective layer found on , a team of researchers led by Associate Professor Benjamin Tee from the Department of Materials Science and Engineering in the College of Design and Engineering at NUS translated this concept into a versatile material, named ReSURF, capable of spontaneously forming a water-repellent interface.

Unlocking the mystery behind Barrett’s esophagus

A team led by researchers at Baylor College of Medicine and Washington University School of Medicine has shed light on the process that drives Barrett’s esophagus formation. This condition affects the lining of the esophagus—the tube that carries food from the mouth to the stomach—and increases the risk of developing esophageal adenocarcinoma, a serious and often deadly cancer.

The study, published in the Journal of Clinical Investigation, reveals that two important genes involved in guiding and maintaining the identity of the esophagus and intestine, SOX2 and CDX2, are altered in Barrett’s esophagus. The findings not only deepen our understanding of how the disease develops but also open the door to new ways of identifying people at risk and potentially preventing the condition from progressing to cancer.

“Esophageal adenocarcinoma is one of the fastest growing solid cancers. It is difficult to treat, and there are no effective screening techniques available,” said first and co-corresponding author Dr. Ramon Jin, assistant professor in the John T. Milliken Department of Medicine at Washington University.

Edible microlasers made from food-safe materials can serve as barcodes and biosensors

If you’ve ever consumed food made with olive oil, there’s a good chance you’ve unknowingly ingested materials capable of producing lasers. Researchers have recently demonstrated edible microlasers—tiny lasers made entirely from food-safe materials—that can be used for food monitoring, product authentication and tagging. These edible microlasers are composed of droplets of oil or water–glycerol mixtures doped with natural optical gain substances, such as chlorophyll (the green pigment in leaves) or riboflavin (vitamin B2).

Researchers have shown that already contains enough chlorophyll to be used directly as a laser in the form of droplets without the need for additional ingredients. They can be excited using external light, such as a pulsed laser. The research is published in the journal Advanced Optical Materials.

Edible microlasers can be realized in different configurations, including whispering gallery modes (where light circulates inside a droplet) and Fabry–Pérot cavities (where light reflects back and forth between two surfaces). Their emission properties can be tuned by varying the cavity size or the surrounding conditions, such as the refractive index of the medium.

Laser-wielding device is like an anti-aircraft system for mosquitoes

While we may still not have flying cars, robot butlers or food replicators actually in our possession, you can now order something else you may have long dreamt of. It’s called the Photon Matrix, and it uses lasers to track and kill airborne mosquitoes.

Currently the subject of an Indiegogo campaign, the Chinese-designed device is claimed to be capable of detecting a mosquito and gauging its distance, orientation and body size within just 3 milliseconds.

It does so using a LiDAR (light detection and ranging) module which determines the locations of objects by emitting laser light pulses, then measuring how long it takes that laser light to be reflected back by whatever it hits. When a mosquito is detected in this fashion, a second galvanometer-directed laser is instantaneously used to fatally zap the insect.