Toggle light / dark theme

Alzheimer’s disease (AD) is defined by synaptic and neuronal degeneration and loss accompanied by amyloid beta (Aβ) plaques and tau neurofibrillary tangles (NFTs)1,2,3. In vivo animal experiments indicate that both Aβ and tau pathologies synergistically interact to impair neuronal circuits4. For example, the hypersynchronous epileptiform activity observed in over 60% of AD cases5 may be generated by surrounding Aβ and/or tau deposition yielding neuronal network hyperactivity5,6. Cortical and hippocampal network hyperexcitability precedes memory impairment in AD models7,8. In an apparent feedback loop, endogenous neuronal activity, in turn, regulates Aβ aggregation, in both animal models and computational simulations9,10. Multiple other factors involved in AD pathogenesis-remarkably, neuroinflammatory dysregulations-also seemingly influence neuronal firing and act on hypo/hyperexcitation patterns11,12,13. Thus, mounting evidence suggest that neuronal excitability changes are a key mechanistic event appearing early in AD and a tentative therapeutic target to reverse disease symptoms3,4,7,14. However, the exact patterns of Aβ, tau and other disease factors’ neuronal activity alterations in AD’s neurodegenerative progression are unclear as in vivo and non-invasive measuring of neuronal excitability in human subjects remains impractical.

Brain imaging and electrophysiological monitoring constitute a reliable readout for brain network degeneration likely associating with AD’s neuro-functional alterations3,15,16,17,18. Patients present distinct resting-state blood-oxygen-level-dependent (BOLD) signal content in the low frequency fluctuations range (0.01–0.08 Hz)16,19. These differences increase with disease progression, from cognitively unimpaired (CU) controls to mild cognitive impairment (MCI) to AD, correlating with performance on cognitive tests16. Another characteristic functional change is the slowing of the electro-(magneto-) encephalogram (E/MEG), with the signal shifting towards low frequency bands15,18. Electrophysiological spectral changes associate with brain atrophy and with losing connections to hub regions including the hippocampus, occipital and posterior areas of the default mode network20. All these damages are known to occur in parallel with cognitive impairment20. Disease processes also manifest differently given subject-specific genetic and environmental conditions1,21. Models of multiple pathological markers and physiology represent a promising avenue for revealing the connection between individual AD fingerprints and cognitive deficits3,18,22.

In effect, large-scale neuronal dynamical models of brain re-organization have been used to test disease-specific hypotheses by focusing on the corresponding causal mechanisms23,24,25. By considering brain topology (the structural connectome18) and regional profiles of a pathological agent24, it is possible to recreate how a disorder develops, providing supportive or conflicting evidence on the validity of a hypothesis23. Generative models follow average activity in relatively large groups of excitatory and inhibitory neurons (neural masses), with large-scale interactions generating E/MEG signals and/or functional MRI observations26. Through neural mass modeling, personalized virtual brains were built to describe Aβ pathology effects on AD-related EEG slowing25 and several hypotheses for neuronal hyperactivation have been tested27. Simulated resting-state functional MRI across the AD spectrum was used to estimate biophysical parameters associated with cognitive deterioration28. In addition, different intervention strategies to counter neuronal hyperactivity in AD have been tested10,22. Notably, comprehensive computational approaches combining pathophysiological patterns and functional network alterations allow the quantification of non-observable biological parameters29 like neuronal excitability values in a subject-specific basis1,3,18,21,23,24, facilitating the design of personalized treatments targeting the root cause(s) of functional alterations in AD.

Trump—flanked by larry ellison, sam altman, & masayoshi son—announces project stargate.

Trump announces Project Stargate, a $500 billion initiative backed by major tech leaders, aimed at revolutionizing U.S. AI infrastructure, creating jobs, and enhancing healthcare through advanced technologies. AI Infrastructure and Economic Impact.

🏗️Project Stargate, a $500+ billion AI infrastructure initiative, aims to construct colossal data centers and physical campuses across the US, potentially creating over 100,000 American jobs.

🌐The project will build physical and virtual infrastructure to power next-generation AI advancements, with Oracle, SoftBank, and Microsoft as key partners, establishing a new US-centered industry. ## Healthcare Applications.

Blockchain technology offers a solution to this issue by storing all your documents and identification records on a network. The tech can theoretically ensure such documents are securely stored, easily accessible, and protected from unauthorized alterations.

Blockchain has already been used for identification in real-world scenarios. For example, during the Syrian refugee crisis, blockchain technology was used to record the identities of refugees securely. It also facilitated the management of financial aid and grocery purchases, enabling refugees to access necessary resources without any hurdles.

Today I have the pleasure of speaking with a visionary thinker and innovator who’s making waves in the world of artificial intelligence and the future of human health. Dr. Ben Goertzel is the founder and CEO of SingularityNET, a decentralized AI platform that aims to democratize access to advanced artificial intelligence. He’s also the mind behind OpenCog, an open-source project dedicated to developing artificial general intelligence, and he’s a key figure at Hanson Robotics, where he helped create the well-known AI robot, Sophia.

Beyond AI, Dr. Goertzel is deeply involved in exploring how technology can enhance human longevity, contributing to initiatives like Rejuve, which aims to leverage AI and blockchain to advance life extension research. With a career that spans cognitive science, AI development, and innovative health tech, Dr. Goertzel is shaping the future in ways that will impact all of us. Please join me in welcoming Dr. Ben Goertzel!

PRODUCTION CREDITS
⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺
Host, Writer — @emmettshort.
Executive Producer — Keith Comito

This episode is sponsored by Legal Zoom.

Launch, run, and protect your business to make it official TODAY at https://www.legalzoom.com/ and use promo code Smith10 to get 10% off any LegalZoom business formation product excluding subscriptions and renewals.

In this episode of the Eye on AI podcast, we dive into the world of Artificial General Intelligence (AGI) with Ben Goertzel, CEO of SingularityNET and a leading pioneer in AGI development.

Ben shares his vision for building machines that go beyond task-specific capabilities to achieve true, human-like intelligence. He explores how AGI could reshape society, from revolutionizing industries to redefining creativity, learning, and autonomous decision-making.

A team of cybersecurity researchers at Stony Brook University has uncovered a new way for scammers to steal from unsuspecting cryptocurrency users. They have posted a paper to the arXiv preprint server describing the new crypto scam and how users can protect themselves.

Cryptocurrency is a type of digital currency run on a secure online platform. One example is Coinbase. Crypto currency is stored in a crypto wallet. In this new study, the team in New York reports that scammers have found a way to get people to redirect crypto payments away from intended recipients and toward wallets held by the scammers.

The researchers call the scam typosquatting. It involves setting up Blockchain Naming Systems (BNS) that are similar to those used by well-known entities. It exploits the use of simple word-based addresses rather than the complicated and hard-to-remember letter and digit codes commonly associated with crypto wallets.

🚀 Q: How might Trump’s administration impact AI development in the US? A: Trump aims to make America “first in AI” by dismantling Biden’s policy framework and reducing government regulation, potentially leading to skyrocketing growth in AI, cryptocurrencies, blockchain, Web3, and augmented reality.

🔓 Q: What’s J.D. Vance’s stance on AI development? A: Trump’s potential VP J.D. Vance supports open source AI and decentralized power, aiming to prevent large tech companies from steering regulation and allowing smaller innovators to compete.

Quantum, Blockchain & AI | Sarah Baldeo, Founder, ID Quotient Advisory Group. Sarah will be presenting at the upcoming Fin+AI 2024 Conference.

Register with code EARLYBIRD until July 15th — www.finaiconference.com.

Sarah Baldeo is an experienced neuroscientist, technologist, corporate strategist and entrepreneur, closing on 20 years of leadership experience. Sarah shares her experience in working with banks, payment providers, insurance, and other enterprise organizations. Sarah shares her perspective on AI, Quantum, Blockchain and other technologies.

In 2023 Sarah graced more than 50 stages, and gave 24 keynotes, was featured on 960AM radio, and most recently nominated for the DMZ 2024 Women of the Year Award & the Top 25 Women of Influence Award. You may have even seen her on TV during the Wimbledon Open Commercials!