Meet the keynote speakers at Longevity Summit Dublin 2025. Explore leaders in aging research, biotech, and longevity science.
Category: life extension

Shape-shifting particles allow temperature control over fluid flow and stiffness
Imagine a liquid that flows freely one moment, then stiffens into a near-solid the next, and then can switch back with a simple change in temperature. Researchers at the University of Chicago Pritzker School of Molecular Engineering and NYU Tandon have now developed such a material, using tiny particles that can change their shape and stiffness on demand.
Their research paper, “Tunable shear thickening, aging, and rejuvenation in suspensions of shape-memory endowed liquid crystalline particles,” published in Proceedings of the National Academy of Sciences, demonstrates a new way to regulate how dense suspensions—mixtures of solid particles in a fluid—behave under stress.
These new particles are made from liquid crystal elastomers (LCEs), a material that combines the structure of liquid crystals with the flexibility of rubber. When heated or cooled, the particles change shape: they soften and become round at higher temperatures, and stiffen into irregular, angular forms at lower ones. This change has a dramatic effect on how the suspension flows.
Can You Upload Your Mind & Live Forever?
Get Merch designed with ❤ from https://kgs.link/shop-136 Join the Patreon Bird Army 🐧 https://kgs.link/patreon ▼▼ More infos and links are just a click aw…

Open House
Have you heard about the crazy guys who bought an entire tower to convert it into a vertical village? Yes, that’s us.
Do you want to walk the 16-floor tower and explore the space? Still on the fence, if you should become a citizen? Do you have questions about how you can get involved and co-create? Wanna hear updates on what happened in the last 2 weeks? This event is for you! 👩🚀
About us: We are transforming a 16-floor tower in the heart of San Francisco into a self-governed vertical village —a hub for frontier technologies and creative arts. 8 themed floors will be dedicated to creating tier-one labs, spanning AI, Ethereum, biotech, neuroscience, longevity, robotics, human flourishing, and arts & music. These floors will house innovators and creators pushing the boundaries of human potential in a post-AI-singularity world.

Mimicking the benefits of exercise with a single molecule
Capital Medical University, in collaboration with the Chinese Academy of Sciences, reports that betaine, a molecule produced in the kidney and enhanced through sustained exercise, operates as a potent inhibitor of inflammatory and aging-related pathways.
Regular physical activity boosts health across cardiovascular, metabolic, and neurological systems. Scientists have traced improvements in immune function, insulin sensitivity, clearing of senescent cells and tissue regeneration to consistent physical activity. Earlier animal studies suggested that long-term exercise can delay aging processes and reduce vulnerability to chronic disease.
Precise molecular explanations for how sustained exercise reshapes human biology remain incomplete. Many investigations have focused on single biomarkers or isolated tissues, leaving a need for systematic maps that can connect exercise to measurable physiological benefits. Specific factors capable of mimicking exercise’s protective effects without requiring continuous physical exertion have remained unclear.




Scientists reprogram ant behavior using brain molecules
Leafcutter ants live in highly organized colonies where every ant has a job, and now researchers can flip those jobs like a switch. By manipulating just two neuropeptides, scientists can turn defenders into nurses or gardeners into leaf harvesters. These same molecular signals echo in naked mole-rats, revealing a deep evolutionary link in how complex societies function, even across species. The study also teases out a possible connection to insulin and longevity, hinting at new frontiers in understanding human behavior and lifespan.

Aging-related inflammation is not universal across human populations, new study finds
Inflammation, long considered a hallmark of aging, may not be a universal human experience, according to a new study from Columbia University Mailman School of Public Health. The research suggests that “inflammaging”—chronic, low-grade inflammation associated with aging—appears to be a byproduct of industrialized lifestyles and varies significantly across global populations.
The findings are published in Nature Aging.
Researchers analyzed data from four populations: two industrialized groups—the Italian InCHIANTI study and the Singapore Longitudinal Aging Study (SLAS)—and two Indigenous, non-industrialized populations—the Tsimane of the Bolivian Amazon and the Orang Asli of Peninsular Malaysia. While the inflammaging signature was similar between the two industrialized populations, it did not hold in the Indigenous groups, where inflammation levels were largely driven by infection rather than age.