Extending the life of the bypass, the operation that saves the heart when the coronary arteries close, by intervening in the biological behaviour of the implanted vessels. This is the idea behind the first gene therapy administered during a heart bypass. The first patient in the world to receive it was a 73-year-old man in Scotland’s Golden Jubilee University National Hospital.
Bypass allows blood flow to the heart to be restored by bypassing blocked arteries, using vessels taken from other parts of the body to act as a graft, i.e. a ‘bridge’ to the blocked arteries. In most cases, veins taken from the leg (usually the great saphenous vein) are used because they are readily available and simple to implant. In the case of the 73-year-old British man, gene therapy was added to the bypass, which consists of carrying the TIMP-3 gene into the vein before implanting it as a graft. The new gene therapy aims to make the vessel more stable and resistant right from the start by affecting its biological behaviour before it is implanted in the heart. The researchers are thus attempting to overcome one of the main limitations of the bypass procedure: once connected to the heart, the veins have to withstand much higher pressure than they are designed for, which in time leads them to shrink and reduce blood flow, until they lose their function.








