Menu

Blog

Archive for the ‘energy’ category

Oct 22, 2024

Physicists uncover universal non-equilibrium quantum dynamics in randomly interacting spin models

Posted by in categories: energy, quantum physics

A new study has uncovered the universal dynamics far from equilibrium in randomly interacting spin models, thereby complementing the well-established universality in low-energy equilibrium physics. The study, recently published in Nature Physics, was the result of a collaborative effort involving the research group led by Prof. Du Jiangfeng and Prof. Peng Xinhua at the University of Science and Technology of China (USTC), along with the theoretical groups of Prof. Zhai Hui from Tsinghua University and Dr. Zhang Pengfei from Fudan University.

Oct 22, 2024

A Strange Energy Beam Appears To Move At Five Times The Speed Of Light

Posted by in categories: energy, space

A plasma jet from galaxy M87 appears to move five times faster than light.

In the world of astronomy, a peculiar and seemingly impossible phenomenon is unfolding in galaxy M87. A beam of plasma, or energy, is shooting out from the galaxy’s core and appears to travel at five times the speed of light, as observed by the Hubble Space Telescope. Though this illusion has been known since 1995, it continues to challenge our understanding of the universe’s laws, particularly the cosmic speed limit that states nothing can move faster than light.

Oct 22, 2024

Petroleum drilling technology is now making carbon-free power

Posted by in category: energy

A new technique for harvesting geothermal energy being pioneered in Utah has passed a significant milestone: Southern California Edison has contracted for enough of the energy to power 400,000 homes.

Oct 21, 2024

Getting fresh water from renewable power

Posted by in category: energy

Instead of needing constant power, new system adjusts to use whatever’s available.

Oct 20, 2024

Baffling Scientists: Why Did Millions of People Feel Shaking in New York City?

Posted by in category: energy

The Tewksbury earthquake’s minimal local damage but widespread impact was due to its rupture direction, funneling shaking from New Jersey towards New York City, with the anomaly highlighted in studies on seismic energy distribution.

A magnitude 4.8 earthquake in Tewksbury startled millions across the U.S. East Coast, marking the strongest recorded tremor in New Jersey since 1900.

But researchers noted something else unusual about the earthquake: why did so many people 40 miles away in New York City report strong shaking, while damage near the earthquake’s epicenter appeared minimal?

Oct 20, 2024

All electric without batteries: Are flow batteries the future of EVs?

Posted by in categories: chemistry, energy, sustainability, transportation

A flow battery, also known as a reduction-oxidation (Redox) flow battery, is an electrochemical cell that uses two moving liquid electrolytes to generate electricity.


Ion transfer occurs across the cell membrane, accompanied by current flow through an external circuit, while the liquids circulate in their respective spaces. The liquids required are stored in separate tanks until required.

Continue reading “All electric without batteries: Are flow batteries the future of EVs?” »

Oct 19, 2024

Cuba’s electric grid collapses again while millions remain in the dark

Posted by in category: energy

O.o!!!!


As electricity was being restored in parts of Cuba following an island-wide blackout, a total collapse of the electrical grid occurred once again.

Oct 19, 2024

New technique enhances absorptivity of powders for metal 3D printing

Posted by in categories: 3D printing, chemistry, energy, nanotechnology

A team from Lawrence Livermore National Laboratory, Stanford University and the University of Pennsylvania introduced a novel wet chemical etching process that modifies the surface of conventional metal powders used in 3D printing.


In a significant advancement for metal additive manufacturing, researchers at Lawrence Livermore National Laboratory (LLNL) and their academic partners have developed a groundbreaking technique that enhances the optical absorptivity of metal powders used in 3D printing.

The innovative approach, which involves creating nanoscale surface features on metal powders, promises to improve the efficiency and quality of printed metal parts, particularly for challenging materials like copper and tungsten, according to researchers.

Continue reading “New technique enhances absorptivity of powders for metal 3D printing” »

Oct 17, 2024

Magnetic octupoles help overcome problems with antiferromagnets

Posted by in categories: energy, physics

Physicists at RIKEN have demonstrated how ultrafast, low-power-consumption memory devices could be realized by replacing conventional magnetic materials with novel ones.

Oct 14, 2024

Loss Analysis Boosts OLED Performance

Posted by in categories: electronics, energy

OLED performance depends on the behavior of electron–hole pairs, or excitons, that form within the emissive layer of the device. High efficiencies can be obtained when most of the excitons produce light as they decay, but some excitons can be lost without emitting light through a process known as exciton–polaron quenching (EPQ).

EPQ was believed to occur mainly within the bulk of the emissive layer, but recent studies have suggested that significant quenching can take place at the interface with the adjacent device layers. To isolate this energy-loss channel, the researchers designed a series of bilayer devices that allowed them to identify three physical factors that govern interfacial EPQ in any OLED device. They found that the dominant factor is the effect of the energy barriers experienced by electrons and holes at the interfaces: A barrier higher than about 0.2 eV leads to greater interfacial EPQ, which causes a significant drop in emission efficiency.

Armed with this knowledge the researchers engineered OLED devices to minimize losses from interfacial EPQ, which resulted in efficiency enhancements for red, green, and blue devices of 70%, 47%, and 66%, respectively. The loss mitigation also increased the lifetime of blue OLEDs by as much as 67%, an important result for creating long-lived full-color displays.

Page 1 of 35912345678Last