The next wave of scientific discovery is being built right here in Central Texas. The Texas Advanced Computing Center (TACC) at The University of Texas at Austin
The poplar (Populus alba) has a unique survival strategy: when exposed to hot and dry conditions, it curls its leaves to expose the ventral surface, reflecting sunlight, and at night, the moisture condensed on the leaf surface releases latent heat to prevent frost damage. Plants have evolved such intricate mechanisms in response to dynamic environmental fluctuations in diurnal and seasonal temperature cycles, light intensity, and humidity, but there have been few instances of realizing such a sophisticated thermal management system with artificial materials.
Now, a KAIST research team has developed an artificial material that mimics the thermal management strategy of the poplar leaf, significantly increasing the applicability of power-free, self-regulating thermal management technology in applications such as building facades, roofs, and temporary shelters. The paper is published in the journal Advanced Materials.
The research team led by Professor Young Min Song of the School of Electrical Engineering, in collaboration with Professor Dae-Hyeong Kim’s team at Seoul National University, has developed a flexible hydrogel-based “Latent-Radiative Thermostat (LRT)” that mimics the natural heat regulation strategy of the poplar leaf.
Physicists at the University of Osaka have unveiled a breakthrough theoretical framework that uncovers the hidden physical rule behind one of the most powerful compression methods in laser fusion science—the stacked-shock implosion.
While multi-shock ignition has recently proven its effectiveness in major laser facilities worldwide, this new study identifies the underlying law that governs such implosions, expressed in an elegant and compact analytic form.
A team led by Professor Masakatsu Murakami has developed a framework called Stacked Converging Shocks (SCS), which extends the classical Guderley solution—a 1942 cornerstone of implosion theory—into the modern high-energy-density regime.
When current flows through a wire, it doesn’t always have a perfect path. Tiny defects within the wire mean current must travel a more circuitous route, a problem for engineers and manufacturers seeking reliable equipment.
Through a partnership with industry, researchers at the FAMU-FSU College of Engineering and Florida State University’s Center for Advanced Power Systems and the National High Magnetic Field Laboratory have supported the development of a design that uses multiple strands of superconducting tape to create a cable, minimizing the chance of failure from defective spots within a wire. When current encounters a defect in one wire, it jumps to a neighboring wire to continue moving.
The research, which is published in Superconductor Science and Technology, helps to solve engineering and manufacturing challenges for manufacturers and could lead to more efficient and less expensive wires for electric motors and many other superconducting coil applications.
Despite the vast diversity of human languages, specific grammatical patterns appear again and again. A new study reveals that around a third of the long-proposed “linguistic universals”—patterns thought to hold across all languages—are statistically supported when examined with state-of-the-art evolutionary methods.
An international team led by Annemarie Verkerk (Saarland University) and Russell D. Gray (Max Planck Institute for Evolutionary Anthropology) used Grambank, the world’s most comprehensive database of grammatical features, to test 191 proposed universals across more than 1,700 languages. Traditionally, linguists have attempted to circumvent the genealogical and geographic non-independence of languages by sampling widely separated languages.
However, sampling can fail to remove all dependencies, reduce statistical power and does not identify historical pathways. The Bayesian spatio-phylogenetic analyses used by the authors accounted for both the genealogical and geographic non-independence of languages—a level of statistical rigor rarely achieved in previous work.
Manufacturing sustainable aviation fuel with CO₂ byproducts of ethanol production could reduce carbon intensity by more than 80% compared to fossil fuels.
The CO2 released from corn during ethanol production could actually be a valuable, underutilized resource for producing aviation fuel rather than a waste byproduct, according to a study published in the SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy.
Unlike the CO₂ from coal plants or cement kilns, which requires a lot of energy to capture, fermentation to produce ethanol releases very pure streams containing 85% CO₂ by volume or higher. As the corn plants sequestered CO₂ from the air, capturing the CO₂ released from fermentation and using it as fuel would reuse CO₂ without adding more to the atmosphere.
A McGill University-led research team has demonstrated the feasibility of a sustainable and cost-effective way to desalinate seawater. The method—thermally driven reverse osmosis (TDRO)—uses a piston-based system powered by low-grade heat from solar thermal, geothermal heat and other sources of renewable energy to produce fresh water.
Though previous research showed promise, this study is the first to analyze TDRO’s thermodynamic limits. The results have brought researchers closer to realizing the technology which could improve access to water and increase the sustainability of infrastructure.
“Most desalination is done by reverse osmosis, which uses electricity to drive water through a membrane,” said Jonathan Maisonneuve, study co-author and Associate Professor of Bioresource Engineering.
QUT researchers have identified why some materials can block heat more effectively, which is a key feature for energy conversion, insulation and gas storage.
The research, published in Nature Communications, discovered a structural mechanism that explains why some materials with uneven composition exhibit exceptionally low thermal conductivity. This is a property vital for the conversion of heat into electrical energy.
The first author, Siqi Liu, said the findings challenged conventional models that overlook the role of microstructural features.