Toggle light / dark theme

Led Team Discovers Metallic Material With Record Thermal Conductivity

A UCLA-led, multi-institution research team has discovered a metallic material with the highest thermal conductivity measured among metals, challenging long-standing assumptions about the limits of heat transport in metallic materials.

Published this week in Science, the study is led by Yongjie Hu, a professor of mechanical and aerospace engineering at the UCLA Samueli School of Engineering. The team reported that metallic theta-phase tantalum nitride conducts heat nearly three times more efficiently than copper or silver, the best conventional heat-conducting metals.

Thermal conductivity describes how efficiently a material can carry heat. Materials with high thermal conductivity are essential for removing localized hot spots in electronic devices, where overheating limits performance, reliability and energy efficiency. Copper currently dominates the global heat-sink market, accounting for roughly 30% of commercial thermal-management materials, with a thermal conductivity of about 400 watts per meter-kelvin.

Chiral phonons create orbital current via their own magnetism

In a new study, an international group of researchers has found that chiral phonons can create orbital current without needing magnetic elements—in part because chiral phonons have their own magnetic moments. Additionally, this effect can be achieved in common crystal materials. The work has potential for the development of less expensive, energy-efficient orbitronic devices for use in a wide array of electronics.

All electronic devices are based upon the charge of an electron, and electrons have three intrinsic properties: spin, charge and orbital angular momentum. While researchers have long explored the use of spin as a more efficient way to create current, the field of orbitronics —based upon using an electron’s orbital angular momentum, rather than its spin, to create a current flow—is still relatively new.

“Traditionally it has been technically challenging to generate orbital current,” says Dali Sun, co-corresponding author on the study published in Nature Physics. Sun is a professor of physics and member of the Organic and Carbon Electronics Lab (ORaCEL) at North Carolina State University.

The art of custom-intercalating 42 metals into layered titanates

A research team affiliated with UNIST has reported a novel synthesis strategy that enables the direct intercalation of a wide range of metal cations into the interlayer spaces of layered titanate (LT) structures. This approach opens new possibilities for designing highly tailored catalysts and energy storage materials for specific industrial applications.

Professors Seungho Cho (Department of Materials Science and Engineering), Kwangjin An (School of Energy and Chemical Engineering), and Hu Young Jeong (Graduate School of Semiconductor Materials and Devices Engineering) at UNIST, in collaboration with Professor Jeong Woo Han from Seoul National University, report this advancement in Advanced Materials.

New algae system cuts building’s energy cost by absorbing indoor heat

Microalgae‑based architecture could soon come to Western Australia.

A team from Murdoch University is working on a project to integrate microalgae-filled photobioreactors into everyday structures like houses, apartments, mining dongas, and urban designs.

If adapted, it could improve energy efficiency and environmental health.

Study reveals why light-driven chemical reactions often lose energy before bond-breaking

Florida State University researchers have discovered a pathway within a certain type of molecule that limits chemical reactions by redirecting light energy. The study could enable development of more efficient reactions for pharmaceuticals and other products.

The researchers examined ligand-to-metal photocatalysts. Ligands are a molecule bound to a larger molecule; in this case, to a metal. Photocatalysts are materials that use light to accelerate a chemical reaction. Theoretically, these molecules should be readily able to harness light energy toward chemical reactivity. But in experiments, chemists only found inefficient reactions.

The FSU research, published in the Journal of the American Chemical Society, shows why: The molecule quickly moves into a less energetic state before the absorbed energy can break chemical bonds. The energy is drained too quickly into the wrong place, so bond-breaking is limited.

Researchers unlocked a new shortcut to quantum materials

Scientists are learning how to temporarily reshape materials by nudging their internal quantum rhythms instead of blasting them with extreme lasers. By harnessing excitons, short-lived energy pairs that naturally form inside semiconductors, researchers can alter how electrons behave using far less energy than before. This approach achieves powerful quantum effects without damaging the material, overcoming a major barrier that has limited progress for years.

Direct visualization captures hidden spatial order of electrons in a quantum material

The mystery of quantum phenomena inside materials—such as superconductivity, where electric current flows without energy loss—lies in when electrons move together and when they break apart. KAIST researchers have succeeded in directly observing the moments when electrons form and dissolve ordered patterns.

Research teams led by Professors Yongsoo Yang, SungBin Lee, Heejun Yang, and Yeongkwan Kim of the Department of Physics, in an international collaboration with Stanford University, have become the first in the world to spatially visualize the formation and disappearance of charge density waves (CDWs) inside quantum materials.

The research is published in Physical Review Letters.

/* */