Toggle light / dark theme

Cryonics in Space, Cryostasis Repair Science & Revival Ethics

Cryonics in space, cryostasis repair science, and revival ethics and planning are converging in 2025 to shape a bold new vision for life extension and post-biological freedom.

Join us Thursday, July 31 at 6 PM EST for a virtual service featuring two of cryonics’ leading voices:

Rudy Hoffman – Immortality Through Innovation.
Rudy opens with the visionary idea of cryonics in space and shares how today’s planning tools—annuity structures, revival trusts, and insurance-backed systems—support long-term access to biostasis. He ends with a powerful call to preserve freedom in the era of revival governance.

Alex Crouch – The Bridges to Reanimation.
Founder of Revival Research Group, Alex outlines the six bridges of cryostasis repair science, covering nanotech repair, AI orchestration, simulation, and bioprinting. His roadmap aims to make revival a transparent, collaborative goal.

Opening remarks by Neal Vanderee, officiator of the Church of Perpetual Life, connecting science, spirit, and future readiness.

Schedule:

Printing Life: 3D Bio-Printed Organs

Explores the groundbreaking world of 3D bioprinting in regenerative medicine, where custom organs printed layer-by-layer from human cells are transforming transplantation. In this video, we uncover the latest advances in bioprinting technology, from biocompatible bioinks to vascularized tissue scaffolds that mimic natural organ architecture.

Dive into the science behind printing life as we showcase flagship projects: a beating mini heart engineered with human cardiomyocytes; 3D-printed liver organoids that perform metabolic functions; and personalized kidney scaffolds seeded with patient-derived stem cells. Learn how bio-printed skin grafts with integrated blood vessels accelerate wound healing and reduce scarring and discover innovations in printing complex structures like pancreas and lung tissue.

We break down key techniques—extrusion-based bioprinting, stereolithographic printing, and sacrificial ink methods—that enable high-resolution, cell-friendly constructs. Our experts explain challenges in tissue vascularization, bioink formulation, and regulatory pathways for clinical use. Gain insights into clinical trials driving the future of organ transplants without donor shortages.

Whether you’re a biotech researcher or tech enthusiast, this video offers insights and case studies. Don’t miss this cutting-edge guide to 3D bio-printed organs and tissue engineering.

#techforgood #futureofmedicine #aiinhealthcare #medicalai #bioprinting #tissueengineering #explainervideo #scienceexplained

Scientists 3D print tumors for cancer research — TissueTinker using 3D bioprinting to create miniature models of healthy and diseased tissue for side-by-side comparison, backed by McGill

3D printing goes way beyond articulated dragons.

In Vivo Bioprinting Shows Promise for 3D Printed Implants Without Surgery

Researchers headed by a team at the California Institute of Technology developed an ultrasound-guided 3D printing technique that could make it possible to fabricate medical implants in vivo and deliver tailored therapies to tissues deep inside the body—all without invasive surgery. The researchers say the imaging-guided deep tissue in vivo sound printing (DISP) platform utilizes low-temperature–sensitive liposomes (LTSLs) as carriers for cross-linking agents, enabling precise, controlled in situ fabrication of biomaterials within deep tissues.

Reporting on their development in ScienceImaging-guided deep tissue in vivo sound printing”, first author Elham Davoodi, PhD, and senior, corresponding author Wei Gao, PhD, described proof of concept studies demonstrating in vivo printing within the bladders and muscles of mice, and rabbits, respectively. Gas vesicle (GV)–based ultrasound imaging integrated into the printing platform enabled real-time monitoring of the printing process and precise positioning. In their paper, the authors concluded, “DISP’s ability to print conductive, drug-loaded, cell-laden, and bioadhesive biomaterials demonstrates its versatility for diverse biomedical applications.”

Three-dimensional (3D) bioprinting technologies offer significant promise to modern medicine by enabling the creation of customized implants, intricate medical devices, and engineered tissues, tailored to individual patients, the authors wrote. “However, the implantation of these constructs often requires invasive surgeries, limiting their utility for minimally invasive treatments.”

Scientists Bioprint Living Tissues That Could Revolutionize Diabetes Treatment

Carnegie Mellon researchers have used FRESH 3D bioprinting to create the first collagen-based microphysiologic systems, offering new hope for Type 1 diabetes treatment. Collagen is widely recognized for its role in maintaining healthy skin, but its importance extends far beyond that. As the most

Printing the Future of Life: How 3D Collagen Scaffolds Grow Real Tissues

Researchers at the University of Pittsburgh have created a groundbreaking tissue engineering platform using 3D-printed collagen scaffolds called CHIPS.

By mimicking natural cellular environments, they enable cells to grow, interact, and form functional tissues — a major step beyond traditional silicone-based microfluidic models. The platform not only models diseases like diabetes but could also replace animal testing in the future. Plus, their designs are freely available to fuel broader scientific innovation.

3D bioprinting: turning science fiction into science reality.