Toggle light / dark theme

A Radical New Kind of Particle Accelerator Could Transform Science

A particle accelerator that produces intense X-rays could be squeezed into a device that fits on a table, my colleagues and I have found in a new research project.

The way that intense X-rays are currently produced is through a facility called a synchrotron light source. These are used to study materials, drug molecules, and biological tissues. Even the smallest existing synchrotrons, however, are about the size of a football stadium.

Our research, which has been accepted for publication in the journal Physical Review Letters, shows how tiny structures called carbon nanotubes and laser light could generate brilliant X-rays on a microchip. Although the device is still at the concept stage, the development has the potential to transform medicine, materials science, and other disciplines.

Cracking the code of complexity in computer science’s P vs. NP problem

New research from the University of Waterloo is making inroads on one of the biggest problems in theoretical computer science. But the way to do it, according to Cameron Seth, a Ph.D. researcher working in the field of algorithmic approximation, is by breaking the problem down into smaller pieces.

“Everyone working in computer science and mathematics knows about the ‘P vs. NP’ problem,” Seth says. “It’s one of the notorious Millennium Prize Problems: so famous and so difficult that solving one will earn you a million dollars.”

To understand the crux of the “P vs. NP” problem, imagine an enormous jigsaw puzzle or a Sudoku puzzle. It would be a “P” problem if it could be solved relatively quickly by a computer, whereas they would be an “NP” problem if they were extremely difficult to solve, but a provided solution could be quickly verified.

Science history: Chemists discover buckyballs — the most perfect molecules in existence — Nov. 14, 1985

Over a feverish 10-day period in 1985, scientists conceived of a new molecule of perfect symmetry — and named it after one of the 20th century’s most famous inventors and futurists.

The hunt started in the 1970s when Harry Kroto, a lab chemist at the University of Sussex in the U.K., was puzzling over the discovery of a primordial soup of organic molecules in the “vast dark clouds that lie between the stars,” Kroto said in his Nobel Prize speech.

Tabletop particle accelerator could transform medicine and materials science

A particle accelerator that produces intense X-rays could be squeezed into a device that fits on a table, my colleagues and I have found in a new research project.

The way that intense X-rays are currently produced is through a facility called a . These are used to study materials, drug molecules and biological tissues. Even the smallest existing synchrotrons, however, are about the size of a football stadium.

Our research, which is published in the journal Physical Review Letters, shows how tiny structures called carbon nanotubes and could generate brilliant X-rays on a microchip. Although the device is still at the concept stage, the development has the potential to transform medicine, and other disciplines.

SCP-4076: The VHS Tape That Deletes Reality | The Science of The “Video Hurt System”

What if watching a video didn’t just change your mind — but erased your existence?
In this speculative science deep dive, we explore SCP-4076, the infamous “Video Hurt System”, a VHS tape that destroys anything that observes it.

Through the lens of quantum collapse, memetic contagion, and information physics, we examine how a piece of analog media could defy the laws of reality itself.
Is SCP-4076 proof that knowledge can have mass? Could perception itself carry the power to rewrite existence?

Join us as we investigate the intersection of cognitive hazards, quantum theory, and metaphysical information, where curiosity becomes a weapon and observation erases the observer.

📅 New speculative science essays every weekday at 6 p.m. PST / 9 p.m. EST
🔔 Subscribe and turn on notifications — explore the edge of what’s possible.
💬 Tell us: would you play the tape?

The Future of Aging: How Science Could Prevent You From Growing Old

Most people accept aging as inevitable. Aubrey de Grey refuses to.

In this episode, the world’s most recognized longevity scientist breaks down why aging is a solvable engineering problem — not a mystery of biology.

Aubrey shares the moments that shaped his mission to defeat death, the science behind “longevity escape velocity”, and how AI breakthroughs like AlphaFold are accelerating humanity’s fight against aging.

He also reveals what he actually does to stay biologically younger at 62 — from cutting-edge diagnostics to his take on rapamycin, plasma exchange, GLP-1s, and Brian Johnson’s Blueprint.

If you’re a founder, technologist, or anyone fascinated by the future of the human body — this conversation will completely reframe how you think about aging, biology, and time itself.

Follow Super Human Podcast:

/* */