Toggle light / dark theme

AI House Davos

Embodied AI refers to AI integrated into physical systems that can perceive, reason, and act in the real world through sensors and actuators, like robots and autonomous vehicles. This fireside conversation explores how advances in AI like vision–language–action models are redefining what machines can understand and do, especially as we move from navigation to mobile manipulation. The speakers discuss how quickly today’s rapid progress in AI might transfer to robotics and embodied systems, and how soon we can expect to see these technologies making a tangible impact on our daily lives.

Speakers.
Yann LeCun (Advanced Machine Intelligence, Founder and Executive Chairman)
Marc Pollefeys (ETH Zürich and Faculty, ETH AI Center, Professor)

© AI House Davos 2026
Founders & Strategic Partners:
ETH AI Center, Merantix, G42, Hewlett Packard Enterprise, EPFL AI Center, The University of Tokyo.

Presenting Partners:
KPMG.

Human-Centric Intelligence: A New Paradigm For AI Decision Making

In my latest Forbes article, I explore one of the most critical questions facing leaders today:

How do we use AI to augment human intelligence rather than diminish it?

AI’s true power isn’t about automation alone—it’s about amplifying human judgment, creativity, and decision-making.

#AI #HumanCentricAI #artificialintelligence #tech #AugmentedIntelligence #Forbes #Leadership #Cybersecurity #EmergingTechnology #DigitalTransformation


Human-centric AI is the new frontier; it is not AI against human intelligence, but AI with human intelligence.

AI in Charge: Large-Scale Experimental Evidence on Electric Vehicle Charging Demand

Asynchronous firing and off states in working memory maintenance.


Mozumder, Wang et al. use high-density recordings in macaque prefrontal and parietal cortex to show that working memory is sustained by asynchronous spiking activity without prolonged silent periods. Off states are characterized by relatively decreased information decoding and are synchronized between areas. The balance between asynchronous firing and off states determines memory maintenance.

Elon Musk Holds Surprise Talk At The World Economic Forum In Davos

The musk blueprint: navigating the supersonic tsunami to hyperabundance when exponential curves multiply: understanding the triple acceleration.

On January 22, 2026, Elon Musk sat down with BlackRock CEO Larry Fink at the World Economic Forum in Davos and delivered what may be the most important articulation of humanity’s near-term trajectory since the invention of the internet.

Not because Musk said anything fundamentally new—his companies have been demonstrating this reality for years—but because he connected the dots in a way that makes the path to hyperabundance undeniable.

[Watch Elon Musk’s full WEF interview]

This is not visionary speculation.

This is engineering analysis from someone building the physical infrastructure of abundance in real-time.

Neutrophil extracellular trapping network-associated biomarkers in liver fibrosis: machine learning and experimental validation

The diagnostic and therapeutic potential of neutrophil extracellular traps (NETs) in liver fibrosis (LF) has not been fully explored. We aim to screen and verify NETs-related liver fibrosis biomarkers through machine learning.

In order to obtain NETs-related differentially expressed genes (NETs-DEGs), differential analysis and WGCNA analysis were performed on the GEO dataset (GSE84044, GSE49541) and the NETs dataset. Enrichment analysis and protein interaction analysis were used to reveal the candidate genes and potential mechanisms of NETs-related liver fibrosis. Biomarkers were screened using SVM-RFE and Boruta machine learning algorithms, followed by immune infiltration analysis. A multi-stage model of fibrosis in mice was constructed, and neutrophil infiltration, NETs accumulation and NETs-related biomarkers were characterized by immunohistochemistry, immunofluorescence, flow cytometry and qPCR. Finally, the molecular regulatory network and potential drugs of biomarkers were predicted.

A total of 166 NETs-DEGs were identified. Through enrichment analysis, these genes were mainly enriched in chemokine signaling pathway and cytokine-cytokine receptor interaction pathway. Machine learning screened CCL2 as a NETs-related liver fibrosis biomarker, involved in ribosome-related processes, cell cycle regulation and allograft rejection pathways. Immune infiltration analysis showed that there were significant differences in 22 immune cell subtypes between fibrotic samples and healthy samples, including neutrophils mainly related to NETs production. The results of in vivo experiments showed that neutrophil infiltration, NETs accumulation and CCL2 level were up-regulated during fibrosis. A total of 5 miRNAs, 2 lncRNAs, 20 function-related genes and 6 potential drugs were identified based on CCL2.

AI-powered intelligent 6G radio access technology significantly enhances wireless communication performance

Korea’s research community has reached an important milestone on the path toward next-generation mobile communications with the development of a technology platform that brings the 6G era closer. Researchers expect that AI-Native mobile networks, in which artificial intelligence autonomously controls and optimizes the communication system, could achieve transmission efficiencies up to 10 times higher than those of 5G.

Breakthroughs in AI-based wireless access ETRI has completed the development of AI-based wireless access technology (AI-RAN), a core foundational technology for the 6G era, and has achieved significant results in paving the way for the AI-based next-generation mobile communication era.

The biggest feature of this technology is that it has applied AI to wireless transmission, network control, and edge computing throughout the network to reliably handle large volumes of data even in ultra-dense network environments.

The human advantage: Stronger brains in the age of AI

Stronger brains strengthen resilience, productivity, and shared prosperity. It is time to invest accordingly.

The brain is the body’s most complex and vital organ, regulating everything from basic life functions to complex decision-making. It is also the foundation of how people live, work, and connect, making it central to individual well-being, high-performing organizations, and resilient economies. Despite rapid technological advances, nothing yet replicates the brain’s capacity to contribute to society.

AI will reshape work, and competitiveness will hinge on combining human and machine strengths. Countries and companies must evolve their strategies to enable collaboration and harness the complementary strengths of human intelligence and technology, or risk slower growth and being left behind in the next era of the global economy. And while the stakes are high if we fail to invest in the health of our brains and the skills that make us uniquely human, the potential gains—individually, socially, and economically—are even greater if we choose to do so.

In this report, brain health is defined as a state of optimal brain functioning, supported by the promotion of healthy brain development and the prevention or treatment of mental, neurological, and substance use disorders in people of all ages. But health alone is not enough. Brain skills—the foundational cognitive, interpersonal, self-leadership, and technological literacy abilities that enable people to adapt, relate, and contribute meaningfully—are equally critical to societal progress. Together, these form what is called brain capital.

Underinvestment in the brain has a substantial cost. The global disease burden of brain health conditions is rising, driven by an aging population, increased stressors, and elevated uncertainty about the future. When societies overlook the brain’s central role in health and productivity, the impact is felt in disrupted lives, lost potential, and a heavy toll on families and caregivers. Scaling cost-effective interventions to prevent, treat, and help people recover from brain health conditions could avert 267 million disability-adjusted life years (DALYs) globally by 2050, generating up to $6.2 trillion in cumulative GDP gains.1 Investing early can create even greater returns—quality early-childhood programs have demonstrated annual returns of 7 to 13 percent and delivered benefit-to-cost ratios of up to nine to one in low-and middle-income countries.

In this report by the McKinsey Health Institute, in collaboration with the World Economic Forum, the authors make the case for investing in the brain, introduce five levers for action, and offer a road map for next steps. While specific actions may vary by stakeholder, region, or sector, there is a need for a shared aspiration and framework for change. This report aims to fill that gap.

“ (

/* */