Toggle light / dark theme

Vital intertwining: Blood parasite’s chainmail-like DNA structure could inspire next-generation materials

As tough as medieval chainmail armor and as soft as a contact lens. This material is not taken from science fiction, it is a natural structure made of thousands of DNA circles interlinked with each other. Studying it can help us advance our knowledge in many fields, from biophysics and infectious diseases to materials science and biomedical engineering.

This topic is the subject of “Organisation and dynamics of individual DNA segments in topologically complex genomes,” an article that has been published in Nucleic Acid Research.

The study, which also appeared on the front cover of the journal, is the result of a collaboration between the Department of Physics of the University of Trento, with Guglielmo Grillo under the supervision of Luca Tubiana, and the Department of Physics and Astronomy of the University of Edinburgh, with Saminathan Ramakrishnan and Auro Varat Patnaik, supervised by Davide Michieletto.

Converting Spin Waves to Vibrational Waves

The demonstration of wave conversion may lead to spintronic technology that transmits fragile spin data as acoustic waves.

A branch of electronic device engineering called spintronics uses electron spins to store and transmit information. A research team has now opened up new possibilities for information processing with spins by showing how spin signals can be translated into acoustic signals (phonons) that can be transmitted through materials [1]. Phonons can travel undisturbed for longer distances, so this conversion might extend the capabilities of spintronics, much as the conversion of electrical pulses into light is used for long-distance telecommunication.

In a spin current, electrons that are preferentially aligned in one spin state can be thought of as remaining stationary while a wave of spin reorientation passes through the material. Spin currents are already used in devices such as specialized magnetic memories and other computing elements, in which information is encoded and transferred using the spins.

Climate whiplash by 2064: Study projects extreme swings in rainfall and drought for Asia

A climate study led by The Hong Kong University of Science and Technology (HKUST), in collaboration with an international research team, reveals that under a high-emission scenario, the Northern Hemisphere summer monsoons region will undergo extreme weather events starting in 2064. Asia and broader tropical regions will face frequent “subseasonal whiplash” events, characterized by extreme downpours and dry spells alternating every 30 to 90 days which trigger climate disruptions with catastrophic impacts on food production, water management, and clean energy systems.

Published in Science Advances under the title “Increased Global Subseasonal Whiplash by Future BSISO Behavior,” the research was co-led by Prof. Lu Mengqian, Director of the Otto Poon Center for Climate Resilience and Sustainability and Associate Professor of the Department of Civil and Environmental at HKUST and Dr. Cheng Tat-Fan, a postdoctoral fellow in the Department of Civil and Environmental Engineering at HKUST, alongside collaborators from the University of Hawaiʻi at Mānoa, Sun Yat-Sen University and Nanjing University of Information Science and Technology.

Integrative quantum chemistry method unlocks secrets of advanced materials

A new computational approach developed at the University of Chicago promises to shed light on some of the world’s most puzzling materials—from high-temperature superconductors to solar cell semiconductors—by uniting two long-divided scientific perspectives.

“For decades, chemists and physicists have used very different lenses to look at materials. What we’ve done now is create a rigorous way to bring those perspectives together,” said senior author Laura Gagliardi, Richard and Kathy Leventhal Professor in the Department of Chemistry and the Pritzker School of Molecular Engineering. “This gives us a new toolkit to understand and eventually design materials with extraordinary properties.”

When it comes to solids, physicists usually think in terms of broad, repeating band structures, while chemists focus on the local behavior of electrons in specific molecules or fragments. But many important materials—such as organic semiconductors, metal–organic frameworks, and strongly correlated oxides—don’t fit neatly into either picture. In these materials, electrons are often thought of as hopping between repeating fragments rather than being distributed across the material.

Femtosecond lasers push the limits of nanostructures for thermal engineering

Femtosecond laser-induced periodic surface structures can be used to control thermal conductivity in thin film solids, report researchers from Japan. Their innovative method, which leverages high-speed laser ablation, produces parallel nanoscale grooves with unprecedented throughput that is 1,000 times stronger than conventional approaches, strategically altering phonon scattering in the material.

This scalable and semiconductor-ready approach could make it possible to mass-produce thermal engineering structures while maintaining laboratory-level precision.

Pinpointing the glow of a single atom to advance quantum emitter engineering

Researchers have discovered how to design and place single-photon sources at the atomic scale inside ultrathin 2D materials, lighting the path for future quantum innovations.

Like perfectly controlled light switches, quantum emitters can turn on the flow of single particles of light, called photons, one at a time. These tiny switches—the “bits” of many quantum technologies—are created by atomic-scale defects in materials.

Their ability to produce light with such precision makes them essential for the future of quantum technologies, including quantum computing, secure communication and ultraprecise sensing. But finding and controlling these atomic light switches has been a major scientific challenge—until now.

Two-step method enables controllable WS₂ epitaxy growth

In a study published in Journal of the American Chemical Society, a team led by Prof. Song Li from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences synthesized monolayer WS2 lateral homojunctions via in situ domain engineering, and enabled controllable direct chemical vapor deposition (CVD) growth of these structures.

Two-dimensional (2D) are ideal candidates to replace silicon-based semiconductors due to their exceptional electrical properties at atomic scales. However, device applications require heterogeneous field-effect modulation behaviors across low-dimensional units. Van der Waals interactions or lateral atomic bonding allow damage-free integration into homojunctions/heterojunctions, but direct epitaxy growth remains challenging due to strict atomic species constraints.

In this study, researchers first determined optimal intrinsic defect configurations through theoretical simulations. Then they employed a two-step CVD method to achieve the in situ modulation of defect structures at the domain level, yielding homojunctions with tailored defect architectures.

New Warp-Drive Propulsion Concept Moves Fictional Starships Closer to Engineering Reality

A new warp-drive study proposes a novel segmented design that could sidestep many of the problems in the original decades-old concept, bringing the possibility of hyper-fast space travel one step closer to becoming a reality.

Warp drive theory has quickly evolved since the mid-90s, when a concept developed by Mexican physicist Miguel Alcubierre was first described in a landmark paper that provided a scientific basis for hyper-fast travel within general relativity.

While the concept of warp drives was initially popularized in the futuristic realm depicted in Star Trek, Alcubierre took the idea to paper, shaping the fictional idea into a conceptual reality—one that, someday, could potentially also be realized through advanced engineering.

Durable catalyst shields itself for affordable green hydrogen production

An international research team led by Professor Philip C.Y. Chow at The University of Hong Kong (HKU) has unveiled a new catalyst that overcomes a major challenge in producing green hydrogen at scale. This innovation makes the process of producing oxygen efficiently and reliably in the harsh acidic environment used by today’s most promising industrial electrolyzers.

Spearheaded by Ci Lin, a Ph.D. student in HKU’s Department of Mechanical Engineering, the team’s work was published in ACS Energy Letters.

Green hydrogen is seen as a clean fuel that can help reduce carbon emissions across industries like steelmaking, chemical production, long-distance transportation, and seasonal energy storage. Proton exchange membrane (PEM) electrolyzers are preferred for their compact design and rapid response, but they operate in acidic conditions that are exceptionally demanding on the oxygen evolution reaction (OER) catalyst.

Blue jean dye could make batteries greener

Sustainability is often described in shades of green, but the future of clean energy may also carry a hint of deep blue. Electric vehicles and energy storage systems could soon draw power from a familiar pigment found in denim.

Concordia researchers have found that indigo, the natural dye used to color fabrics for centuries, can help shape the future of safe and sustainable batteries. In a study published in Nature Communications, the team revealed that the common substance supports two essential reactions inside a solid-state battery at the same time. This behavior helps the battery hold more energy, cycle reliably and perform well even in cold conditions.

“We were excited to see that a natural molecule could guide the battery chemistry instead of disrupting it,” says Xia Li, the study’s lead author and associate professor in the Department of Chemical and Materials Engineering. “Indigo helps the battery work in a very steady and predictable way. That is important if we want greener materials to play a role in future energy systems.”

/* */