Toggle light / dark theme

Navier–Stokes existence and smoothness

The problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.

Enzyme-based plastics recycling at an industrial scale could be cost-effective, analysis finds

A successful collaboration involving a trio of research institutions has yielded a roadmap toward an economically viable process for using enzymes to recycle plastics.

The researchers, from the National Renewable Energy Laboratory (NREL), the University of Massachusetts Lowell, and the University of Portsmouth in England, previously partnered on the of improved PETase enzymes that can break down polyethylene terephthalate (PET). With its low manufacturing cost and excellent material properties, PET is used extensively in single-use packaging, soda bottles, and textiles.

The new study, published in Nature Chemical Engineering, combines previous fundamental research with advanced chemical engineering, process development, and techno-economic analysis to lay the blueprints for enzyme-based PET recycling at an industrial scale.

Nanobody hitchhikers boost immunotherapy potency in cancer treatment

Researchers led by John T. Wilson, Vanderbilt University associate professor of chemical and biomolecular engineering and biomedical engineering, have developed a new approach using a molecularly designed nanobody platform that seeks to make immunotherapy more effective in the treatment of cancer.

The research, “Potentiating Cancer Immunotherapies with Modular Albumin-Hitchhiking Nanobody-STING Agonist Conjugates,” is published in Nature Biomedical Engineering.

Immunotherapy is revolutionizing cancer treatment, but few patients benefit from the treatment, according to researchers. However, Wilson and his Immunoengineering Lab at Vanderbilt, along with collaborators at Vanderbilt University Medical Center, SOMBS, and the College of Arts and Sciences, aim to solve this problem.

Surprising versatility of boron nitride nanotubes displayed in fusion of art and science

In an elegant fusion of art and science, researchers at Rice University have achieved a major milestone in nanomaterials engineering by uncovering how boron nitride nanotubes (BNNTs)—touted for their strength, thermal stability and insulating properties—can be coaxed into forming ordered liquid crystalline phases in water. Their work, published in Langmuir, was so visually striking it graced the journal’s cover.

That vibrant image, however, represents more than just the beauty of science at the nanoscale. It captures the essence of a new, scalable method to align BNNTs in using a common bile-salt surfactant—sodium deoxycholate (SDC)—opening the door to next-generation materials for aerospace, electronics and beyond.

“This work is very interesting from the fundamental point of view because it shows that BNNTs can be used as model systems to study novel nanorod liquid crystals,” said Matteo Pasquali, the A.J. Hartsook Professor of Chemical and Biomolecular Engineering, professor of chemistry, materials science and nanoengineering and corresponding author on the study.

New MRI approach maps brain metabolism, revealing disease signatures

A new technology that uses clinical MRI machines to image metabolic activity in the brain could give researchers and clinicians unique insight into brain function and disease, researchers at the University of Illinois Urbana-Champaign report. The non-invasive, high-resolution metabolic imaging of the whole brain revealed differences in metabolic activity and neurotransmitter levels among brain regions; found metabolic alterations in brain tumors; and mapped and characterized multiple sclerosis lesions—with patients only spending minutes in an MRI scanner.

Led by Zhi-Pei Liang, a professor of electrical and computer engineering and a member of the Beckman Institute for Advanced Science and Technology at the U. of I., the team reported its findings in the journal Nature Biomedical Engineering.

“Understanding the brain, how it works and what goes wrong when it is injured or diseased is considered one of the most exciting and challenging scientific endeavors of our time,” Liang said. “MRI has played major roles in unlocking the mysteries of the brain over the past four decades. Our new technology adds another dimension to MRI’s capability for brain imaging: visualization of brain metabolism and detection of metabolic alterations associated with brain diseases.”

Scientists develop stable all-perovskite tandem solar cells

A research group led by Prof. Ge Ziyi from the Ningbo Institute of Materials Technology and Engineering (NIMTE) of the Chinese Academy of Sciences has developed an innovative strategy to alleviate NiOx corrosion, enabling more efficient and stable all-perovskite tandem solar cells (TSCs).

Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System

A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body tell the difference between friendly visitors, like me

Scientists demonstrate unconditional exponential quantum scaling advantage using two 127-qubit computers

Quantum computers have the potential to speed up computation, help design new medicines, break codes, and discover exotic new materials—but that’s only when they are truly functional.

One key thing that gets in the way: noise or the errors that are produced during computations on a quantum machine—which in fact makes them less powerful than —until recently.

Daniel Lidar, holder of the Viterbi Professorship in Engineering and Professor of Electrical & Computer Engineering at the USC Viterbi School of Engineering, has been iterating on , and in a new study along with collaborators at USC and Johns Hopkins, has been able to demonstrate a quantum exponential scaling advantage, using two 127-qubit IBM Quantum Eagle processor-powered quantum computers, over the cloud.

Magically reducing errors in quantum computers: Researchers invent technique to decrease overhead

For decades, quantum computers that perform calculations millions of times faster than conventional computers have remained a tantalizing yet distant goal. However, a new breakthrough in quantum physics may have just sped up the timeline.

In an article titled “Efficient Magic State Distillation by Zero-Level Distillation” published in PRX Quantum, researchers from the Graduate School of Engineering Science and the Center for Quantum Information and Quantum Biology at the University of Osaka devised a method that can be used to prepare high-fidelity “magic states” for use in quantum computers with dramatically less overhead and unprecedented accuracy.

Quantum computers harness the fantastic properties of quantum mechanics such as entanglement and superposition to perform calculations much more efficiently than classical computers can. Such machines could catalyze innovations in fields as diverse as engineering, finance, and biotechnology. But before this can happen, there is a significant obstacle that must be overcome.

Three-mode smart window cut indoor temperature by 27°C and eliminate urban glare

In the building sector, which accounts for approximately 40% of global energy consumption, heat ingress through windows has been identified as a primary cause of wasted heating and cooling energy.

A KAIST research team has successfully developed a ‘pedestrian-friendly smart window’ technology capable of not only reducing heating and cooling energy in urban buildings but also resolving the persistent issue of ‘’ in urban living.

Professor Hong Chul Moon’s research team at KAIST’s Department of Chemical and Biomolecular Engineering have developed a ‘smart window technology’ that allows users to control the light and entering through windows according to their intent, and effectively neutralize glare from external sources.