Toggle light / dark theme

The Sun’s Poles Hold the Key to Its Three Greatest Mysteries

The Sun’s poles may hold answers to long-standing mysteries about magnetic cycles, solar wind, and space weather. The polar regions of the Sun remain one of the least explored areas in solar science. Although satellites and ground-based observatories have captured remarkable details of the Sun’s su

A New Eye on Earth’s Edge: UC Berkeley-Guided Space Telescope Has Liftoff

Engineers work in the Mission Operations Center at the Space Sciences Laboratory at UC Berkeley on Sept. 25, 2025. A UC Berkeley lab is controlling a NASA mission to study the farthest reaches of Earth’s atmosphere from afar.

This week, a rocket lifted off from Florida’s Kennedy Space Center carrying a new space telescope to its parking spot about 1 million miles from Earth, guided by mission operators at the Space Sciences Laboratory at UC Berkeley.

Once it reaches its permanent home, the Carruthers Geocorona Observatory will turn its eyes back to Earth to study the exosphere — the outermost layer of our atmosphere, where satellites orbit. Researchers hope that by better understanding how this region interacts with space weather from the Sun, they’ll be able to improve protections for satellites, which can be knocked offline by solar activity.

Satellites Detect Mysterious Changes in the Earth’s Core

A team of scientists has detected a colossal geological anomaly, a massive and mysterious change that took place nearly 2,900 kilometers deep, right at the boundary between the Earth’s mantle and the core, an event that measurably altered the planet’s gravitational field and that has been captured, indirectly but unequivocally, by instruments in orbit.

The finding, published last month in the journal Geophysical Research Letters, suggests that the structure of rocks in the depths of the lower mantle can transform dynamically, a process that could have fundamental implications for our understanding of planetary dynamics, from the origin of major earthquakes to the generation of the magnetic field that protects life on the surface.

The research, led by Charlotte Gaugne Gouranton of the City University of Paris and with the notable participation of geophysicist Isabelle Panet of Gustave Eiffel University, focused on the meticulous analysis of data collected by the GRACE (Gravity Recovery and Climate Experiment) satellite mission, a joint project between the United States and Germany that operated between 2002 and 2017.

An AI model can forecast harmful solar winds days in advance

Scientists at NYU Abu Dhabi (NYUAD) have developed an artificial intelligence (AI) model that can forecast solar wind speeds up to four days in advance, significantly more accurately than current methods. The study is published in The Astrophysical Journal Supplement Series.

Solar wind is a continuous stream of charged particles released by the sun. When these particles speed up, they can cause “space weather” events that disrupt Earth’s atmosphere and drag satellites out of orbit, damage their electrons, and interfere with power grids. In 2022, a strong event caused SpaceX to lose 40 Starlink satellites, showing the urgent need for better forecasting.

The NYUAD team, led by Postdoctoral Associate Dattaraj Dhuri and Co-Principal Investigator at the Center for Space Science (CASS) Shravan Hanasoge, trained their AI model using high-resolution ultraviolet (UV) images from NASA’s Solar Dynamics Observatory, combined with historical records of solar wind.

NOAA Issues G3 Geomagnetic Storm Warning As 500,000 Kilometer Hole Sends Solar Wind At Earth

“Surface charging may occur on satellite components, drag may increase on low-Earth-orbit satellites, and corrections may be needed for orientation problems,” the NOAA explains of G3 storms, adding “Intermittent satellite navigation and low-frequency radio navigation problems may occur, HF radio may be intermittent, and aurora has been seen as low as Illinois and Oregon (typically 50° geomagnetic lat.).”

Sun activity increases and decreases in an 11-year cycle known as the Schwabe cycle. From 1826 to 1843, German amateur astronomer Heinrich Schwabe observed the Sun, discovering that it rotates on its axis once every 27 days. He noticed the Sun goes from quiet periods, where no sunspots can be seen, to the maximum phase where 20 or more groups of sunspots can be seen.

During the solar cycle, storms can reach up to level G5, classified as “extreme”, around four times on average. While G3-strength storms are more common, with around 200 per solar cycle, they can still produce powerful aurora around the equinoxes due to something known as the “Russell-McPherron Effect

Ultra-flat optic pushes beyond what was previously thought possible

Cameras are everywhere. For over two centuries, these devices have grown increasingly popular and proven to be so useful, they have become an indispensable part of modern life.

Today, they are included in a vast range of applications—everything from smartphones and laptops to security and to cars, aircraft, and satellites imaging Earth from high above. And as an overarching trend toward miniaturizing mechanical, optical, and electronic products continues, scientists and engineers are looking for ways to create smaller, lighter, and more energy-efficient cameras for these technologies.

Ultra-flat optics have been proposed as a solution for this engineering challenge, as they are an alternative to the relatively bulky lenses found in cameras today. Instead of using a curved lens made out of glass or plastic, many ultra-flat optics, such as metalenses, use a thin, flat plane of microscopic nanostructures to manipulate light, which makes them hundreds or even thousands of times smaller and lighter than conventional camera lenses.

/* */