Toggle light / dark theme

When I saw the introduction of this game, the word “edutainment” popped up in my mind. It definitely turns coding into a more fun, satisfying activity.

“Use real Python code to automate machines, robots, drones and more: Program self-driving vehicles; crack passwords; apply machine learning; automate logistics; use image processing to guide missiles,” the description of JOY OF PROGRAMMING — Software Engineering Simulator reads.

There are various levels that are ready in the game, whose goals, mandatory or optional ones, can be solved with different valid solutions. When finishing the levels, you’ll gain stars, which are used to unlock new programming features.

Researchers at Australia’s Monash University are using a common medicine cabinet antiseptic in unique battery chemistry that could soon power drones and other electric aircraft, according to a school news release.

The team is tapping Betadine, a common brand name for a topical medication used to treat cuts and other wounds, in research garnering surprising results.

“… We found a way to accelerate the charge and discharge rates, making them a viable battery option for real-world heavy-duty use,” paper first author and doctoral student Maleesha Nishshanke said in the release.

British soldiers have successfully trialled for the first time a game-changing weapon that can take down a swarm of drones using radio waves for less than the cost of a pack of mince pies.

The Radio Frequency Directed Energy Weapon (RFDEW) development system can detect, track and engage a range of threats across land, air and sea.

RFDEWs are capable of neutralising targets up to 1km away with near instant effect and at an estimated cost of 10p per shot fired, providing a cost-effective complement to traditional missile-base air defence systems.

A team of roboticists at École Polytechnique Fédérale de Lausanne, working with a colleague from the University of California, has designed, built and demonstrated a bird-like robot that can launch itself into flight using spring-like legs.

The group describes their in a paper published in the journal Nature. Aimy Wissa, an at Princeton University, has published a News & Views piece in the same journal issue suggesting possible ways the innovation could be used in real-world applications.

Some types of drones, such as those with rotors, can rise straight up off the ground—others that are powered with forward-facing or engines that push exhaust out the back must either race along a runway or catapult to get airborne. For this new project, the research team developed a new for getting such craft into the air—jumping using spring-like legs.

Researchers from Seoul National University College of Engineering announced they have developed an optical design technology that dramatically reduces the volume of cameras with a folded lens system utilizing “metasurfaces,” a next-generation nano-optical device.

By arranging metasurfaces on the so that light can be reflected and moved around in the glass substrate in a folded manner, the researchers have realized a with a thickness of 0.7mm, which is much thinner than existing refractive lens systems. The research was published on Oct. 30 in the journal Science Advances.

Traditional cameras are designed to stack multiple glass lenses to refract light when capturing images. While this structure provided excellent high-quality images, the thickness of each lens and the wide spacing between lenses increased the overall bulk of the camera, making it difficult to apply to devices that require ultra-compact cameras, such as virtual and augmented reality (VR-AR) devices, smartphones, endoscopes, drones, and more.