Toggle light / dark theme

Enterovirus Encephalitis in People With Multiple Sclerosis on OcrelizumabInsights From a Multicenter Case Series

This multicenter case series highlights 5 cases of enterovirus encephalitis among people with MS receiving ocrelizumab, presenting with fever, encephalopathy, and gait changes, as well as myocarditis in 1 case.


ObjectivesAnti-CD20 therapies for multiple sclerosis (MS) are highly effective at preventing disease activity. Recognizing infectious complications of these therapies is essential. MethodsThree MS centers shared deidentified clinical data on persons with MS (pwMS) receiving ocrelizumab who developed enterovirus encephalitis.

Creating CAR-T Cells Using Current Alzheimer’s Antibodies

A team of researchers has biologically engineered T cells with currently available Alzheimer’s drugs in order to directly attack the characteristic amyloid plaques of Alzheimer’s disease.

Building on the current paradigm

Most Alzheimer’s treatments used in the clinic are-mabs, monoclonal antibodies that are designed to attack the amyloid beta plaques that accumulate in the brains of people with Alzheimer’s. However, while they have been found to have enough meaningful benefits in clinical trials to be approved by the FDA, they are not a cure, and some analyses question their effectiveness [1].

Lateral habenula and periaqueductal gray neurons signal reward prediction error and continuity of reward expectancy to drive reward-seeking behavior

Lee and Hikosaka show how animals overcome challenges and ultimately achieve goals. They find that LHb and PAG neurons encode prediction errors and the continuity of reward expectancy, with tonic PAG activity sustaining reward expectancy despite prediction errors.

A unified framework combining linear and 3D molecular features for robust drug-protein interaction prediction

Robust drug-protein interaction prediction tool.

The researchers develop PointDPI to predict drug-protein interactions (DPIs) by integrating linear and 3D molecular structures.

PointDPI preserves intermolecular relationships and predicts key regulatory sites, outperforming several state-of-the-art methods.

Four predicted drug-protein interactions (DPIs) are experimentally validated at both mRNA and protein levels, highlighting the therapeutic potential of adenosine in inflammatory diseases, ondansetron and etodolac in neurological diseases, and neuroprotective action for dopamine. sciencenewshighlights ScienceMission https://sciencemission.com/rug-protein-interaction


Sun et al. develop PointDPI to predict drug-protein interactions (DPIs) by integrating linear and 3D molecular structures. PointDPI preserves inter-molecular relationships and predicts key regulatory sites, outperforming several state-of-the-art methods.

Scientists discover new gatekeeper cell in the brain

VIB and Ghent University researchers have identified and characterized a previously unknown cellular barrier in the brain, which sheds new light on how the brain is protected from the rest of the body. In a study published in Nature Neuroscience, the scientists also reveal a new pathway by which the immune system can impact the brain.

Prof. Roosmarijn Vandenbroucke (VIB–UGent Center for Inflammation Research), said, “These findings reveal how vulnerable and protectable the brain is, opening new perspectives for more targeted interventions in brain disorders.”

The brain is protected from the rest of the body by multiple barriers that maintain a stable, tightly regulated environment and defend it against harmful substances and pathogens. The most well-known of these barriers is the blood-brain barrier, but another critical interface is the choroid plexus, a small structure found within the brain’s fluid-filled spaces, which produces cerebrospinal fluid.

Driven electrolytes are agile and active at the nanoscale

Technologies for energy storage as well as biological systems such as the network of neurons in the brain depend on driven electrolytes that are traveling in an electric field due to their electrical charges. This concept has also recently been used to engineer synthetic motors and molecular sensors on the nanoscale or to explain biological processes in nanopores. In this context, the role of the background medium, which is the solvent, and the resulting hydrodynamic fluctuations play an important role. Particles in such a system are influenced by these stochastic fluctuations, which effectively control their movements.

“When we imagine the environment inside a driven electrolyte at the nanoscale, we might think of a calm viscous medium in which ions move due to the electric field and slowly diffuse around. This new study reveals that this picture is wrong: the environment resembles a turbulent sea, which is highly nontrivial given the small scale,” explains Ramin Golestanian, who is director of the Department of Living Matter Physics at MPI-DS, and author of the study published in Physical Review Letters.

The research uncovers how the movement of the ions creates large-scale fluctuating fluid currents that stir up the environment and lead to fast motion of all the particles that are immersed in the environment, even if they are not charged.

/* */