Toggle light / dark theme

Abandoned coal mine drainage identified as a significant source of carbon emissions

For the past 250 years, people have mined coal industrially in Pennsylvania, U.S… By 1830, the city of Pittsburgh was using more than 400 tons of the fossil fuel every day. Burning all that coal has contributed to climate change. Additionally, unremediated mines—especially those that operated before Congress passed regulations in 1977 —have leaked environmentally harmful mine drainage. But that might not be the end of their legacy.

In research presented last week at GSA Connects 2025 in San Antonio, Texas, U.S., Dr. Dorothy Vesper, a geochemist at West Virginia University, found that those abandoned mines pose another risk: continuous CO2 emissions from water that leaks out even decades or centuries after mining stops.

AI Boosts Ocean Forecasting Accuracy and Speed

“The ability to resolve the Gulf Stream and its dynamics properly, has been an open challenge for many years in oceanography,” said Dr. Ashesh Chattopadhyay.


How can AI be used to predict ocean forecasting? This is what a recent study published in the Journal of Geophysical Research Machine Learning and Computation hopes to address as a team of researchers investigated how AI can be used to predict short-and long-term trends in ocean dynamics. This study has the potential to help scientists and the public better understand new methods estimating long-term ocean forecasting, specifically with climate change increasing ocean temperatures.

For the study, the researchers presented a new AI-based modeling tool for predicting ocean dynamics for the Gulf of Mexico, which is a major trade route between the United States and Mexico. The goal of the tool is to build upon longstanding physics-based models that have traditionally been used for predicting ocean dynamics, including temperature and changes in temperature.

In the end, the researchers found that this new model demonstrates improved performance in predicting ocean dynamics, specifically for short-term intervals of 30 days, along with long-term intervals of 10 years. The team aspires to use this new tool for modeling ocean dynamics worldwide.

Turning pollution into clean fuel with stable methane production from carbon dioxide

Carbon dioxide (CO2) is one of the world’s most abundant pollutants and a key driver of climate change. To mitigate its impact, researchers around the world are exploring ways to capture CO2 from the atmosphere and transform it into valuable products, such as clean fuels or plastics. While the idea holds great promise, turning it into reality—at least on a large scale—remains a scientific challenge.

A new study led by Smith Engineering researcher Cao Thang Dinh (Chemical Engineering), Canada Research Chair in Sustainable Fuels and Chemicals, paves the way to practical applications of carbon conversion technologies and may reshape how we design future carbon conversion systems. The research addresses one of the main roadblocks in the carbon : catalyst stability.

In chemical engineering, a catalyst is a substance that accelerates a reaction—ideally, without being consumed in the process. In the case of carbon conversion, catalysts play a critical role by enabling the transformation of CO₂ into useful products such as fuels and building blocks for sustainable materials.

New air filter could turn every building into a carbon sink

Despite decades of warnings and increasing efforts to fight climate change, global carbon emissions are still rising. While cutting emissions from the source is a common way we address this problem, another crucial strategy is actively removing carbon from the atmosphere. Current centralized DAC (direct-air-capture) plants are expensive and take up a lot of land, so scientists have developed a carbon dioxide-catching air filter that can fit into existing ventilation systems of homes and offices around the world.

The researchers describe their filter in a paper published in Science Advances. It is made of tiny carbon threads known as nanofibers that are coated with a polyethylenimine polymer. This combination makes an incredibly effective carbon sponge that captures carbon dioxide molecules from the air, even at low concentrations. The filter can also be cleaned by solar heating or low-energy electricity methods.

The team put their new carbon filter through its paces to see how well it worked. First, they checked how much it could soak up carbon by placing it in a flow system and passing air with a known concentration of carbon dioxide through it. The filter proved highly selective and fast, capturing the molecules and letting the rest of the air pass through.

Early experiment at the dawn of dinosaur evolution discovered

Argentinian researchers have described a Carnian theropod with features previously thought to belong only to much later neotheropods, indicating greater early dinosaur diversity than expected as well as a possible climate-related ebb and return of dinosaur abundance in northwestern Argentina.

How a nutrient spark turned Earth into an oxygen world

A new study has revealed how phosphorus, a nutrient essential for photosynthesis, surged into ancient oceans and started Earth’s first major rise in atmospheric oxygen more than 2 billion years ago.

Dr. Matthew Dodd, from UWA’s School of Earth and Oceans, is lead author of the study published in Nature Communications. “By fueling blooms of photosynthetic microbes, these phosphorus pulses boosted burial and allowed oxygen to accumulate in the air, a turning point that ultimately made possible,” Dr. Dodd said.

The research combined a global archive of ancient carbonate rocks with modeling to simulate Earth’s climate system and show that ocean phosphorus and rose and fell together during the Great Oxidation Event.

Early humans dined on giant sloths and other Ice Age giants, archaeologists find

What did early humans like to eat? The answer, according to a team of archaeologists in Argentina, is extinct megafauna, such as giant sloths and giant armadillos. In a study published in the journal Science Advances, researchers demonstrate that these enormous animals were a staple food source for people in southern South America around 13,000 to 11,600 years ago. Their findings may also rewrite our understanding of how these massive creatures became extinct.

For years, the prevailing theory about the extinction of the last great Ice Age megafauna in South America was that it was primarily due to climate change. Humans were previously believed to have played a minor role in their demise, as they hunted smaller prey, such as guanacos (a relative of the camel) and cervids (deer). However, the abundance of bones of extinct megafauna in sites studied by the team suggests that they were probably the most important food source for these .

The archaeologists counted the at 20 sites in modern-day Argentina, Chile and Uruguay. These were places that had been reliably dated to before 11,600 years ago, when these giants were still roaming around. They compared the remains of megafauna (mammals weighing over 44 kilograms) with those of smaller animals to see which were more abundant. They also closely examined the bones for cut marks and other signs that would indicate humans had butchered them.

The Southern Ocean may be building up a massive burp

The ocean has helped mitigate global warming by absorbing about a quarter of anthropogenic carbon dioxide (CO2) emissions, along with more than 90% of the excess heat those emissions generate.

Many efforts, including assessments by the Intergovernmental Panel on Climate Change, have looked at how the oceans may continue to mitigate increasing emissions and . However, few have looked at the opposite: How will the oceans respond if emissions and associated atmospheric heat levels begin to decrease in response to net negative emissions?

Ivy Frenger and colleagues examined what might happen in the Southern Ocean if, after more than a century of human-induced warming, global mean temperatures were to be reduced via CO2 removal from the atmosphere. Their results are published in the journal AGU Advances.

/* */