Toggle light / dark theme

Biomimetic multimodal tactile sensing enables human-like robotic perception

Robots That Feel: A New Multimodal Touch System Closes the Gap with Human Perception.

In a major advance for robotic sensing, researchers have engineered a biomimetic tactile system that brings robots closer than ever to human-like touch. Unlike traditional tactile sensors that detect only force or pressure, this new platform integrates multiple sensing modalities into a single ultra-thin skin and combines it with large-scale AI for data interpretation.

At the heart of the system is SuperTac, a 1-millimeter-thick multimodal tactile layer inspired by the multispectral structure of pigeon vision. SuperTac compresses several physical sensing modalities — including multispectral optical imaging (from ultraviolet to mid-infrared), triboelectric contact sensing, and inertial measurements — into a compact, flexible skin. This enables simultaneous detection of force, contact position, texture, material, temperature, proximity and vibration with micrometer-level spatial precision. The sensor achieves better than 94% accuracy in classifying complex tactile features such as texture, material type, and slip dynamics.

However, the hardware alone isn’t enough: rich, multimodal tactile data need interpretation. To address this, the team developed DOVE, an 8.5-billion-parameter tactile language model that functions as a computational interpreter of touch. By learning patterns in the high-dimensional sensor outputs, DOVE provides semantic understanding of tactile interactions — a form of “touch reasoning” that goes beyond raw signal acquisition.

From a neurotech-inspired perspective, this work mirrors principles of biological somatosensation: multiple receptor types working in parallel, dense spatial encoding, and higher-order processing for perceptual meaning. Integrating rich physical sensing with model-based interpretation is akin to how the somatosensory cortex integrates mechanoreceptor inputs into coherent percepts of texture, shape and motion. Such hardware-software co-design — where advanced materials, optics, electronics and AI converge — offers a pathway toward embodied intelligence in machines that feel and interpret touch much like biological organisms do.

Biomimetic multimodal tactile sensing enables human-like robotic perception.


APOE4 to APOE2 allelic switching in mice improves Alzheimer’s disease-related metabolic signatures, neuropathology and cognition

APOE allele switching improves Alzheimer’s in mice.

Type of apolipoprotein E (APOE) allele carried by individuals is a major risk factor in Alzheimer’s disease (AD). For example, compared to individuals carrying two copies of the APOE ε4 allele, ε2 homozygotes have an approximate 99% reduction in late-onset Alzheimer’s disease (AD) risk.

The authors in this study developed a knock-in mouse model that allows for an inducible ‘switch’ between risk and protective alleles (APOE4s2). These mice synthesize E4 at baseline and E2 after tamoxifen administration.

A whole-body allelic switch resulted in a metabolic profile resembling E2/E2 humans and drives AD-relevant alterations in the lipidome and single-cell transcriptome, particularly in astrocytes.

E4 to E2 switching improved cognition, decreased amyloid pathology, lowered gliosis and reduced plaque-associated apolipoprotein E.

Thus, APOE replacement may be a viable strategy for future gene editing approaches to simultaneously reduce multiple AD-associated pathologies. sciencenewshighlights ScienceMission https://sciencemission.com/APOE4-to-APOE2-allelic-switching


New smart chip reduces consumption and computing time, advancing high-performance computing

A new chip aims to dramatically reduce energy consumption while accelerating the processing of large amounts of data.

A paper on this work appears in the journal Nature Electronics.

The chip was developed by a group of researchers from the Department of Electronics, Information and Bioengineering–DEIB at the Politecnico di Milano, led by Professor Daniele Ielmini, with researcher Piergiulio Mannocci as the first author.

How beige fat keeps blood pressure in check

In this report, researchers link thermogenic adipose tissue (brown/beige fat), best known for heat production, to blood-pressure control via direct fat–blood vessel communication. Using mouse models engineered to lose beige fat identity (via adipocyte-specific disruption of PRDM16), they observed elevated arterial pressure alongside perivascular remodeling, including fibrotic tissue accumulation and marked vascular hypersensitivity to the vasoconstrictor hormone angiotensin II. Mechanistically, loss of beige fat identity increased secretion of QSOX1 (quiescin sulfhydryl oxidase 1), which activated pro-fibrotic gene programs in vascular cells and promoted vessel stiffening; blocking this pathway (including genetic removal of QSOX1 in the model) restored healthier vascular signaling and function. The authors characterize this as a previously underappreciated, obesity-independent axis by which the “quality” (thermogenic vs white-like) of perivascular fat influences vascular stiffness and responsiveness to pressor signals, suggesting QSOX1 and related adipose-derived signals as potential precision targets for future antihypertensive therapies.


A mouse aorta with immunofluorescent tagging, emphasizing the close connection between vasculature and fat. (Credit: Cohen lab)

Obesity causes hypertension. Hypertension causes cardiovascular disease. And cardiovascular disease is the leading cause of death worldwide. While the link between fat and high blood pressure is clearly central to this deadly chain, its biological basis long remained unclear. What is it about fat that impacts vascular function and blood pressure control?

Now, a new study demonstrates how thermogenic beige fat—a type of adipose tissue, distinct from white fat, that helps the body burn energy—directly shapes blood pressure control. Building on clinical evidence that people with brown fat have lower odds of hypertension, the researchers created mouse models that cannot form beige fat (the thermogenic fat depot in mice that most closely resembles adult human brown fat) to watch what happens when this tissue is lost. They found that the loss of beige fat increases the sensitivity of blood vessels to one of the most important vasoconstricting hormones (angiotensin II)—and that blocking an enzyme involved in stiffening vessels and disrupting normal signaling can restore healthy vascular function in mice. These results, published in Science (opens in new window), reveal a previously unknown mechanism driving high blood pressure and point toward more precise therapies that target communication between fat and blood vessels.

Year 2100: Future Technologies that Will Rule the World

The androids of the future will be the distant results of synthetic biology and not silicon.


🚀 Step into a world of boundless innovation as we take you on a journey through the awe-inspiring technologies that await humanity in the 22nd century! 🌌 From advancements in space exploration to mind-boggling leaps in artificial intelligence, this captivating video offers a glimpse into the cutting-edge breakthroughs that will redefine the very fabric of human existence.

🌐 Witness the birth of extraterrestrial civilizations as humans venture further into space, exploring distant planets and establishing self-sustaining colonies. Experience the seamless integration of artificial intelligence into our daily lives, transforming how we interact with technology and creating new possibilities for societal progress. Prepare to be amazed by quantum computing’s extraordinary power, revolutionizing problem-solving and opening doors to scientific discoveries previously deemed impossible.

🌿 Delve into the world of sustainable marvels, where eco-friendly innovations mend our relationship with the environment and pave the way for a greener, more harmonious future. Explore the ethical implications of biotechnology advancements, which offer insights into longevity and human potential. This video paints an inspiring picture of the limitless possibilities and profound transformations that lie ahead in the remarkable world of 22nd-century technologies. Like, share, and subscribe to our channel for more captivating glimpses of the ever-evolving world of tomorrow. 🌟🔮🌠 #FutureTechnologies #22ndCenturyInnovations #EmbracingTomorrow

Self-healing composite can make airplane, automobile and spacecraft components last for centuries

Researchers have created a self-healing composite that is tougher than materials currently used in aircraft wings, turbine blades and other applications—and can repair itself more than 1,000 times. The researchers estimate their self-healing strategy can extend the lifetime of conventional fiber-reinforced composite materials by centuries compared to the current decades-long design-life.

The work is published in the journal Proceedings of the National Academy of Sciences.

“This would significantly drive down costs and labor associated with replacing damaged composite components, and reduce the amount of energy consumed and waste produced by many industrial sectors—because they’ll have fewer broken parts to manually inspect, repair or throw away,” says Jason Patrick, corresponding author of the paper and an associate professor of civil, construction and environmental engineering at North Carolina State University.

Engineering the Future: John Cumbers on Synthetic Biology and Sustainability

Please Like 👍 + Share ⭐ + Subscribe ✅

In this episode of the New Earth Entrepreneurs podcast, we sit down with John Cumbers, founder of SynBioBeta, to discuss how synthetic biology is reshaping industries and creating sustainable solutions.

John shares insights into the role of bio-manufacturing in decarbonizing supply chains, government initiatives supporting bio-innovation, and the potential for space applications of synthetic biology.

Learn how SynBioBeta is building a passionate community of changemakers to engineer a better, more sustainable world.

Learn more about SynBioBeta and their upcoming events at: www.synbiobeta.com.
Connect with John on LinkedIn: www.linkedin.com/in/john-cumbers-542220

The New Earth Entrepreneurs Podcast explores social entrepreneurship and corporate sustainability through engaging conversations with visionary leaders.

Synthetic Biology and AI: The Future of Brain and Body Replacement — SciCon 2024

At SciCon 2024, John Cumbers, founder and CEO of SynBioBeta, explores the groundbreaking and controversial potential of synthetic biology and AI in brain and body replacement. He delves into stem cell research and AI’s role in regenerating brain function, while also addressing the provocative idea of gradually replacing parts of the brain and body. Cumbers discusses how these advancements could one day lead to life extension, challenging traditional views on aging, and raising ethical questions about the future of human biology.

SciCon (2024) is ResearchHub’s annual conference, which unites truth-seekers and innovators to push the boundaries of open science.

– ResearchHub’s mission is to accelerate the pace of scientific research. We are building a modern platform where people can collaborate on scientific research more efficiently, much like GitHub has done for software engineering. We believe scientific research should be accessible to everyone, collaborative, and prioritized.

Product: https://www.researchhub.com/
Website: https://researchhub.foundation/
GitHub: https://github.com/ResearchHub

Penn engineers turn toxic fungus into anti-cancer compound

face_with_colon_three year 2025.


Penn-led researchers have turned a deadly fungus into a potent cancer-fighting compound. After isolating a new class of molecules from Aspergillus flavus, a toxic crop fungus linked to deaths in the excavations of ancient tombs, the researchers modified the chemicals and tested them against leukemia cells. The result? A promising cancer-killing compound that rivals FDA-approved drugs and opens up new frontiers in the discovery of more fungal medicines.

“Fungi gave us penicillin,” says Sherry Gao, Presidential Penn Compact Associate Professor in Chemical and Biomolecular Engineering (CBE) and in Bioengineering (BE) and senior author of a new paper in Nature Chemical Biology on the findings. “These results show that many more medicines derived from natural products remain to be found.”

Scientists turn cells’ most mysterious structures into spies on genetic activity

The barrel-shaped structures found by the thousands in most animal cells are one of biology’s biggest mysteries. But although researchers haven’t figured out the function of these “vaults,” they now report a new use for the puzzling particles.


Enigmatic ‘vaults’ can be engineered to eavesdrop on RNA, aiding cancer studies and more.

/* */