Menu

Blog

Archive for the ‘bioengineering’ category

Oct 30, 2024

With ‘electro-agriculture,’ plants can produce food in the dark and with 94% less land, bioengineers say

Posted by in categories: bioengineering, energy, food, genetics

The acetate would then be used to feed plants that are grown hydroponically. The method could also be used to grow other food-producing organisms, since acetate is naturally used by mushrooms, yeast, and algae.

“The whole point of this new process to try to boost the efficiency of photosynthesis,” says senior author Feng Jiao, an electrochemist at Washington University in St. Louis. “Right now, we are at about 4% efficiency, which is already four times higher than for photosynthesis, and because everything is more efficient with this method, the CO2 footprint associated with the production of food becomes much smaller.”

To genetically engineer acetate-eating plants, the researchers are taking advantage of a metabolic pathway that germinating plants use to break down food stored in their seeds. This pathway is switched off once plants become capable of photosynthesis, but switching it back on would enable them to use acetate as a source of energy and carbon.

Oct 30, 2024

Breakdown of polyethylene therepthalate microplastics under saltwater conditions using engineered Vibrio natriegens

Posted by in categories: bioengineering, biological, health, sustainability

Bioengineered bacteria to eat plastic in seawater:3 Which in large quantities can eat all the plastic in the ocean:3 Yay face_with_colon_three


Poly(ethylene terephthalate) (PET) is a highly recyclable plastic that has been extensively used and manufactured. Like other plastics, PET resists natural degradation, thus accumulating in the environment. Several recycling strategies have been applied to PET, but these tend to result in downcycled products that eventually end up in landfills. This accumulation of landfilled PET waste contributes to the formation of microplastics, which pose a serious threat to marine life and ecosystems, and potentially to human health. To address this issue, our project leveraged synthetic biology to develop a whole-cell biocatalyst capable of depolymerizing PET in seawater environments by using the fast-growing, nonpathogenic, moderate halophile Vibrio natriegens. By leveraging a two-enzyme system—comprising a chimera of IsPETase and IsMHETase from Ideonella sakaiensis —displayed on V. natriegens, we constructed whole-cell catalysts that depolymerize PET and convert it into its monomers in salt-containing media and at a temperature of 30°C.

Oct 29, 2024

3D laser bioprinter designed for precise human tissue engineering

Posted by in categories: bioengineering, bioprinting, biotech/medical, robotics/AI

A way to re grow new parts, perfect DNA match, eventually? Will take Agi / ASI to realize full potential, we ll see.


For this, the researchers have created a compact bioprinter to develop biological tissues with microfilament structures. He is now working to bring this technology to market.

Continue reading “3D laser bioprinter designed for precise human tissue engineering” »

Oct 29, 2024

Researchers discover underlying mechanisms that make CRISPR an effective gene editing tool

Posted by in categories: bioengineering, biotech/medical

CRISPR/Cas9 is a gene editing tool that has revolutionized biomedical research and led to the first FDA-approved CRISPR-based gene therapy. However, until now, the precise mechanism of exactly how this tool works and avoids creating detrimental off-target effects was not well understood.

Oct 29, 2024

Michael Levin: What is Synthbiosis? Diverse Intelligence Beyond AI & The Space of Possible Minds

Posted by in categories: bioengineering, biotech/medical, cyborgs, education, ethics, genetics, information science, robotics/AI

Michael Levin is a Distinguished Professor in the Biology department at Tufts University and associate faculty at the Wyss Institute for Bioinspired Engineering at Harvard University. @drmichaellevin holds the Vannevar Bush endowed Chair and serves as director of the Allen Discovery Center at Tufts and the Tufts Center for Regenerative and Developmental Biology. Prior to college, Michael Levin worked as a software engineer and independent contractor in the field of scientific computing. He attended Tufts University, interested in artificial intelligence and unconventional computation. To explore the algorithms by which the biological world implemented complex adaptive behavior, he got dual B.S. degrees, in CS and in Biology and then received a PhD from Harvard University. He did post-doctoral training at Harvard Medical School, where he began to uncover a new bioelectric language by which cells coordinate their activity during embryogenesis. His independent laboratory develops new molecular-genetic and conceptual tools to probe large-scale information processing in regeneration, embryogenesis, and cancer suppression.

TIMESTAMPS:
0:00 — Introduction.
1:41 — Creating High-level General Intelligences.
7:00 — Ethical implications of Diverse Intelligence beyond AI & LLMs.
10:30 — Solving the Fundamental Paradox that faces all Species.
15:00 — Evolution creates Problem Solving Agents & the Self is a Dynamical Construct.
23:00 — Mike on Stephen Grossberg.
26:20 — A Formal Definition of Diverse Intelligence (DI)
30:50 — Intimate relationships with AI? Importance of Cognitive Light Cones.
38:00 — Cyborgs, hybrids, chimeras, & a new concept called “Synthbiosis“
45:51 — Importance of the symbiotic relationship between Science & Philosophy.
53:00 — The Space of Possible Minds.
58:30 — Is Mike Playing God?
1:02:45 — A path forward: through the ethics filter for civilization.
1:09:00 — Mike on Daniel Dennett (RIP)
1:14:02 — An Ethical Synthbiosis that goes beyond “are you real or faking it“
1:25:47 — Conclusion.

Continue reading “Michael Levin: What is Synthbiosis? Diverse Intelligence Beyond AI & The Space of Possible Minds” »

Oct 26, 2024

Freeze-frame: U of A researchers develop microscope that can see electrons in motion

Posted by in categories: bioengineering, chemistry, quantum physics

Imagine owning a camera so powerful it can take freeze-frame photographs of a moving electron – an object traveling so fast it could circle the Earth many times in a second. Researchers at the University of Arizona have developed the world’s fastest electron microscope that can do just that.

They believe their work will lead to groundbreaking advancements in physics, chemistry, bioengineering, materials sciences and more.

“When you get the latest version of a smartphone, it comes with a better camera,” said Mohammed Hassan, associate professor of physics and optical sciences. “This transmission electron microscope is like a very powerful camera in the latest version of smartphones; it allows us to take pictures of things we were not able to see before – like electrons. With this microscope, we hope the scientific community can understand the quantum physics behind how an electron behaves and how an electron moves.”

Oct 25, 2024

Dr. David B. Agus, MD — Founding Director & Co-CEO, Ellison Institute of Technology

Posted by in categories: bioengineering, biotech/medical, health, security

Science And Engineering For Humanity — Dr. David Agus, MD — Founding Director & Co-CEO, Ellison Institute of Technology.


Dr. David B. Agus (https://davidagus.com/) is one of the world’s leading doctors and pioneering biomedical researchers.

Continue reading “Dr. David B. Agus, MD — Founding Director & Co-CEO, Ellison Institute of Technology” »

Oct 22, 2024

Synthetic Biology: George Church on Genome Sequencing and De-Extinction

Posted by in categories: bioengineering, biotech/medical, existential risks, life extension, nanotechnology, robotics/AI, transhumanism

The great George Church takes us through the revolutionary journey of DNA sequencing from his early groundbreaking work to the latest advancements. He discusses the evolution of sequencing methods, including molecular multiplexing, and their implications for understanding and combating aging.

We talk about the rise of biotech startups, potential future directions in genome sequencing, the role of precise gene therapies, the ongoing integration of nanotechnology and biology, the potential of biological engineering in accelerating evolution, transhumanism, the Human Genome Project, and the importance of intellectual property in biotechnology.

Continue reading “Synthetic Biology: George Church on Genome Sequencing and De-Extinction” »

Oct 22, 2024

Jennifer Doudna on the Brave New World Being Ushered In by Gene Editing

Posted by in categories: bioengineering, biotech/medical

The technology’s promise can sound like science fiction—it might help us adapt to a radically different climate, or grow organs for people in need—but experts are also concerned about its potential side effects.

Oct 21, 2024

Bioengineering cells to support new capabilities

Posted by in categories: bioengineering, biotech/medical, evolution, genetics

Every cell is beholden to a phenomenon called cell fate, a sort of biological preset determined by genetic coding. Burgeoning cells take their developmental cues from a set of core genetic instructions that shape their structure and function and how they interact with other cells in the body.

To you or me, it’s biological law. But to a group of researchers at Stanford Medicine, it’s more of a suggestion. Unconstrained by the rules of evolution, these scientists are instead governed by a question: What if?

What if you could eat a vaccine? Or create a bacterium that could also detect and attack cancer? What if furniture could grow from a seed?

Page 1 of 21612345678Last