Toggle light / dark theme

Programmable nanospheres unlock nature’s 500-million-year-old color secrets

Half a billion years ago, nature evolved a remarkable trick: generating vibrant, shimmering colors via intricate, microscopic structures in feathers, wings and shells that reflect light in precise ways. Now, researchers from Trinity have taken a major step forward in harnessing it for advanced materials science.

A team led by Professor Colm Delaney from Trinity’s School of Chemistry and AMBER, the Research Ireland Center for Advanced Materials and BioEngineering Research, has developed a pioneering method, inspired by nature, to create and program structural colors using a cutting-edge microfabrication technique.

The work could have major implications for environmental sensing, biomedical diagnostics, and photonic materials. The research is published in the journal Advanced Materials.

Tiny artificial cells maintain 24-hour cycles like living organisms

A team of UC Merced researchers has shown that tiny artificial cells can accurately keep time, mimicking the daily rhythms found in living organisms. Their findings shed light on how biological clocks stay on schedule despite the inherent molecular noise inside cells.

The study, published in Nature Communications, was led by bioengineering Professor Anand Bala Subramaniam and chemistry and biochemistry Professor Andy LiWang. The first author, Alexander Zhang Tu Li, earned his Ph.D. in Subramaniam’s lab.

Biological clocks—also known as —govern 24-hour cycles that regulate sleep, metabolism and other vital processes. To explore the mechanisms behind the circadian rhythms of cyanobacteria, the researchers reconstructed the clockwork in simplified, cell-like structures called vesicles. These vesicles were loaded with core clock proteins, one of which was tagged with a fluorescent marker.

Scientists create an artificial cell capable of navigating its environment using chemistry alone

Researchers at the Institute for Bioengineering of Catalonia (IBEC) have created the world’s simplest artificial cell capable of chemical navigation, migrating toward specific substances like living cells do.

This breakthrough, published in Science Advances, demonstrates how microscopic bubbles can be programmed to follow chemical trails. The study describes the development of a “minimal cell” in the form of a lipid encapsulating enzymes that can propel itself through chemotaxis.

Cellular transport is a vital aspect of many biological processes and a key milestone in evolution. Among all types of movement, chemotaxis is an essential strategy used by many living systems to move towards beneficial signals, such as nutrients, or away from harmful ones.

GENETIC ENGINEERING, a Journey into the Future

This is a sci-fi documentary looking at the future of genetic engineering and how it applies to space exploration, astronauts, terraforming planets and even Earth.

What is DNA, and how can it be engineered. What is CRISPR, and the future technology used in genetic engineering and biotechnology.

Personal inspiration in creating this video came from: Jurassic Park (the book), and The Expanse TV show (the protomolecule).

Other topics in the video include: how genetic engineering can change food allergies, cryosleep astronauts using hibernation biology borrowed from bears, squirrels and hedgehogs, engineering plants for terraforming other planets, and entries from The Encyclopedia of the Future.

PATREON
The third volume of ‘The Encyclopedia of the Future’ is now available on my Patreon.

Visit my Patreon here: https://www.patreon.com/venturecity.

Scientists develop tissue-healing gel using milk-derived extracellular vesicles

Researchers from Columbia Engineering have established a framework for the design of bioactive injectable hydrogels formulated with extracellular vesicles (EVs) for tissue engineering and regenerative medicine applications.

Published in Matter, Santiago Correa, assistant professor of biomedical engineering at Columbia Engineering, and his collaborators describe an injectable platform that uses EVs from milk to address longstanding barriers in the development of biomaterials for regenerative medicine.

EVs are particles naturally secreted by cells and carry hundreds of biological signals, like proteins and genetic material, enabling sophisticated cellular communication that cannot easily replicate.

Printing Life: 3D Bio-Printed Organs

Explores the groundbreaking world of 3D bioprinting in regenerative medicine, where custom organs printed layer-by-layer from human cells are transforming transplantation. In this video, we uncover the latest advances in bioprinting technology, from biocompatible bioinks to vascularized tissue scaffolds that mimic natural organ architecture.

Dive into the science behind printing life as we showcase flagship projects: a beating mini heart engineered with human cardiomyocytes; 3D-printed liver organoids that perform metabolic functions; and personalized kidney scaffolds seeded with patient-derived stem cells. Learn how bio-printed skin grafts with integrated blood vessels accelerate wound healing and reduce scarring and discover innovations in printing complex structures like pancreas and lung tissue.

We break down key techniques—extrusion-based bioprinting, stereolithographic printing, and sacrificial ink methods—that enable high-resolution, cell-friendly constructs. Our experts explain challenges in tissue vascularization, bioink formulation, and regulatory pathways for clinical use. Gain insights into clinical trials driving the future of organ transplants without donor shortages.

Whether you’re a biotech researcher or tech enthusiast, this video offers insights and case studies. Don’t miss this cutting-edge guide to 3D bio-printed organs and tissue engineering.

#techforgood #futureofmedicine #aiinhealthcare #medicalai #bioprinting #tissueengineering #explainervideo #scienceexplained

UNM Researchers Receive Funding to Launch Clinical Trial of a New Alzheimer’s Vaccine

University of New Mexico researchers have received funding to launch an early-stage clinical trial of a vaccine engineered to clear pathological tau protein from the brains of patients suffering from Alzheimer’s dementia.

The Phase 1a/1b trial, supported in part by a $1 million grant from the Alzheimer’s Association’s Part the Cloud initiative, will test the novel vaccine, which was developed by UNM School of Medicine scientists, said Kiran Bhaskar, PhD, professor in the Departments of Molecular Genetics & Microbiology and Neurology.

“The primary endpoint of this study is safety and tolerability,” he said. “Can these subjects take these vaccinations without any anticipated side effects or adverse events? The second endpoint is the immunogenicity – can they make antibodies to tau?”

Sc: What research can be furthered?

What has not yet been tried? These are the questions that Inserm research director Nicolas L’Heureux has asked himself every day for a long time, « like a game ». Which means that from very early on he had the idea of pushing the limits of vascular tissue engineering – a field in which he had begun working when doing his M.Sc. « When performing a cardiac or other type of bypass, preference is given to using the patient’s own vessels that are taken from one place and transplanted into another, more critical, one. An autologous graft continues to remain the best solution, but it is a limited resource. » Diseases such as stroke, hyperlipidemia, and thrombosis, which have the particularity of being systemic – in which they attack all vessels to varying degrees –, as well as aging, weaken our vessels. And the earlier the need for surgery, the greater the likelihood of a second intervention. « A transplanted artery will withstand an average of ten years and a vein six to seven years. » Which just leaves synthetic grafts. https://www.inserm.fr/en/news/nicolas-lheureux-artificial-bl…iological/


See relevant content for m.