Toggle light / dark theme

Launch pad indicator error causes SpaceX, NASA to scrub planned static fire test of a Falcon 9 rocket ahead of the Crew-11 launch

Amazon is hoping to get a good rhythm going with the launch and deployment of Project Kuiper, its 3,232-satellite internet constellation, which began operational flights in April. The tech giant said on Thursday that its nearly $140 million investment in Florida is a cornerstone to making that happen.

While shown in the background of photos and hinted at in other public relations materials during its first three launch campaigns, Amazon confirmed on July 24 that its payload processing facility (PPF) at the Kennedy Space Center (KSC) entered service back in April in time to support its first operational launch on a United Launch Alliance (ULA) Atlas 5 rocket.

“There is no better place than Florida’s Space Coast to fulfill Kuiper’s promise to bring broadband to unserved and underserved across the nation and world,” said Brian Huseman, Amazon’s vice president for public policy and community engagement, in a statement. “We are proud to make investments in Florida that will impact the local community and ultimately our customers. We look forward to our long-term partnership with Space Florida, NASA, Space Force, and state and local officials, as well as our launch providers and community partners.”

New surveillance technology can track people by how they disrupt Wi-Fi signals

Hi-tech surveillance technologies are a double-edged sword. On the one hand, you want sophisticated devices to detect suspicious behavior and alert authorities. But on the other, there is the need to protect individual privacy. Balancing public safety and personal freedoms is an ongoing challenge for innovators and policymakers.

This debate is set to reignite with news that researchers at La Sapienza University in Rome have developed a system that can identify individuals just by the way they disrupt Wi-Fi signals.

The scientists have dubbed this new technology “WhoFi.” Unlike traditional biometric systems such as fingerprint scanners and , it doesn’t require direct physical contact or visual feeds. WhoFi can also track individuals in a larger area than a fixed-position camera, provided there is a Wi-Fi network.

New memristor-based system could boost processing of radiofrequency signals

The development of more advanced technologies to process radiofrequency signals could further advance wireless communication, allowing devices connected to the internet to share information with each other faster and while consuming less energy. Currently, radio frequency signals are processed using software-defined radios (SDRs), systems that can modulate, filter and analyze signals using software rather than hardware components.

Despite their widespread use, these systems rely on purely digital hardware in which computing and memory modules are physically separated, leading to constant data shuttling between the two and hence extra energy consumption. Furthermore, the extensive use of circuit components known as analog-to-digital converters (ADCs), which convert incoming radiofrequency signals into digital values that can then be processed by digital computers, often results in processing delays (i.e., latency) and substantial energy consumption. Electronics engineers have thus been trying to develop alternative systems that can directly manipulate signals in their original (i.e., analog) form, which would reduce the movement of data and lower energy consumption.

Researchers at the University of Massachusetts Amherst, Texas A&M University and TetraMem Inc. recently introduced a promising new system for processing analog radiofrequency systems, which is based on non-volatile memory devices known as memristors integrated on a chip. Their proposed system, presented in a paper in Nature Electronics, was found to process radiofrequency signals significantly faster and more energy-efficiently than existing SDRs.

Quantum internet moves closer as researchers teleport light-based information

Quantum teleportation is a fascinating process that involves transferring a particle’s quantum state to another distant location, without moving or detecting the particle itself. This process could be central to the realization of a so-called “quantum internet,” a version of the internet that enables the safe and instant transmission of quantum information between devices within the same network.

Quantum teleportation is far from a recent idea, as it was experimentally realized several times in the past. Nonetheless, most previous demonstrations utilized frequency conversion rather than natively operating in the telecom band.

Researchers at Nanjing University recently demonstrated the teleportation of a telecom-wavelength photonic qubit (i.e., a encoded in light at the same wavelengths supporting current communications) to a telecom quantum memory. Their paper, published in Physical Review Letters, could open new possibilities for the realization of scalable quantum networks and thus potentially a quantum internet.

Quantum Teleportation Was Achieved Over Internet For The First Time

In 2024, a quantum state of light was successfully teleported through more than 30 kilometers (around 18 miles) of fiber optic cable amid a torrent of internet traffic – a feat of engineering once considered impossible.

The impressive demonstration by researchers in the US may not help you beam to work to beat the morning traffic, or download your favourite cat videos faster.

However, the ability to teleport quantum states through existing infrastructure represents a monumental step towards achieving a quantum-connected computing network, enhanced encryption, or powerful new methods of sensing.

Suspended lithium niobate acoustic resonators with Damascene electrodes for radiofrequency filtering

Data rates and volume for mobile communication are ever-increasing with the growing number of users and connected devices. With the deployment of 5G and 6G on the horizon, wireless communication is advancing to higher frequencies and larger bandwidths enabling higher speeds and throughput. Current micro-acoustic resonator technology, a key component in radiofrequency front-end filters, is struggling to keep pace with these developments. This work presents an acoustic resonator architecture enabling multi-frequency, low-loss, and wideband filtering for the 5G and future 6G bands located above 3 GHz. Thanks to the exceptional performance of these resonators, filters for the 5G n77 and n79 bands are demonstrated, exhibiting fractional bandwidths of 25% and 13%, respectively, with low insertion loss of around 1 dB. With its unique frequency scalability and wideband capabilities, the reported architecture offers a promising option for filtering and multiplexing in future mobile devices.


Stettler, S., Villanueva, L.G. Suspended lithium niobate acoustic resonators with Damascene electrodes for radiofrequency filtering. Microsyst Nanoeng 11, 131 (2025). https://doi.org/10.1038/s41378-025-00980-w.

Download citation.

Starlink is preparing a breakthrough: 3rd generation satellites with terabit speed will be launched in 2026

SpaceX continues to actively develop the Starlink satellite internet project. Over the past year, the service has significantly improved speed and stability and expanded to new territories. In the coming years, Starlink will receive more powerful third-generation satellites that will increase the channel’s capacity by an order of magnitude and allow it to serve more people.

World Record Achieved in Transmission Capacity and Distance: With 19-core Optical Fiber with Standard Cladding Diameter 1,808 km Transmission of 1.02 Petabits per Second

An international research team led by the Photonic Network Laboratory at the National Institute of Information and Communications Technology (NICT, President: TOKUDA Hideyuki Ph.D.), and including Sumitomo Electric Industries, Ltd. (Sumitomo Electric, President: INOUE Osamu) have set a new world record in optical fiber communications, achieving data transmission at 1.02 petabits per second over a distance of 1,808 kilometers (roughly equivalent to the distance from Sapporo to Fukuoka, from Missouri to Montana or from Berlin to Naples).