Toggle light / dark theme

The Genius of Computing with Light

Check out shortform and get a FREE trial and $50 OFF the annual plan! at https://www.shortform.com/DrBen.

PsiQuantum are world leaders in the race to utility-scale quantum computing, but they have been shrouded in mystery for over a decade…until now.

Thanks to some good fortune and incredible generosity from the PsiQuantum team I was able to get behind the scenes and see what makes their ground-breaking quantum computer ‘click’

You can see their public paper here: https://www.nature.com/articles/s41586-025-08820-7

0:00 Silicon Valley’s Most Secretive Quantum Computer.
1:38 A Quantum Computer that runs on Light.
6:03 How to Create a Single Photon.
9:00 How to Build a Quantum Clock.
10:48 Ad Read.
11:54 Detecting Single Photons.
15:00 Creating the Perfect Material.
18:19 How to do math with light.
21:45 How to Build a Scalable Quantum Computer.
24:27 Converting Space to Time.
27:25 The First Photonic Quantum Computer Demonstrator.

PATREON:👨‍🔬 🚀 http://patreon.com/DrBenMiles.

Microsoft can now store data for 10,000 years on everyday glass thanks to laser breakthrough

Breakthrough improvements to Microsoft’s glass-based data-storage technology mean ordinary glassware, such as that used in cookware and oven doors, can store terabytes of data, with the information lasting 10,000 years.

The technology, which has been in development under the “Project Silica” banner since 2019, has seen steady improvements, and scientists outlined the latest innovations today (Feb. 18) in the journal Nature.

Record-breaking photons at telecom wavelengths

A team of researchers from the University of Stuttgart and the Julius-Maximilians-Universität Würzburg led by Prof. Stefanie Barz (University of Stuttgart) has demonstrated a source of single photons that combines on-demand operation with record-high photon quality in the telecommunications C-band—a key step toward scalable photonic quantum computation and quantum communication. “The lack of a high-quality on-demand C-band photon source has been a major problem in quantum optics laboratories for over a decade—our new technology now removes this obstacle,” says Prof. Stefanie Barz.

The key: Identical photons on demand In everyday life, distinguishing features may often be desirable. Few want to be exactly like everyone else. When it comes to quantum technologies, however, complete indistinguishability is the name of the game. Quantum particles such as photons that are identical in all their properties can interfere with each other—much as in noise-canceling headphones, where sound waves that are precisely inverted copies of the incoming noise cancel out the background.

When identical photons are made to act in synchrony, then the probability that certain measurement outcomes occur can be either boosted or decreased. Such quantum effects give rise to powerful new phenomena that lie at the heart of emerging technologies such as quantum computing and quantum networking. For these technologies to become feasible, high-quality interference between photons is essential.

Kirigami-inspired sensors precisely map activity of neurons in the primate brain

Recent technological advances have opened new exciting possibilities for the development of smart prosthetics, such as artificial limbs, joints or organs that can replace injured, damaged or amputated body parts. These same advances are also enabling the development of other systems that connect the brain with machines, to record the activity of neurons or allow humans to operate machines in entirely new ways.

Researchers at the Chinese Institute for Brain Research, the National Center for Nanoscience and Technology in Beijing and other institutes recently developed a new flexible and implantable sensor that can record the activity of neurons in the brain of non-human primates. The sensing device, introduced in a paper published in Nature Electronics, is inspired by kirigami, an artistic discipline that entails the creation of intricate structures by folding and cutting paper in specific ways.

“The development of brain–computer interfaces requires implantable microelectrode arrays that can interface with numerous neurons across large spatial and temporal scales,” wrote Runjiu Fang, Huihui Tian and their colleagues in their paper.

Novel quantum dynamics with superconducting qubits

The prevailing view is that quantum phenomena can be leveraged to tackle certain problems beyond the reach of classical approaches. Recent years have witnessed significant progress in this direction; in particular, superconducting qubits have emerged as one of the leading platforms for quantum simulation and computation on Noisy Intermediate-Scale Quantum (NISQ) processors. This progress is exemplified by research ranging from the foundations of quantum mechanics to the non-equilibrium dynamics of elementary excitations and condensed matter physics.

By utilizing the contextuality of quantum measurements to solve a 2D hidden linear function problem, we demonstrate a quantum advantage through a computational separation for up to 105 qubits on these bounded-resource tasks. Motivated by high-energy physics, we image charge and string dynamics in (2+1)D lattice gauge theories, revealing two distinct regimes within the confining phase: a weak-confinement regime with strong transverse string fluctuations and a strong-confinement regime where these fluctuations are suppressed. Turning to condensed matter, we observe novel localization in one-and two-dimensional many-body systems that lack energy diffusion despite being disorder-free and translationally invariant. Additionally, we show that strong disorder in interacting multi-level landscapes can induce superfluidity characterized by long-range phase coherence.

Silicon quantum processor detects single-qubit errors while preserving entanglement

Quantum computers are alternative computing devices that process information, leveraging quantum mechanical effects, such as entanglement between different particles. Entanglement establishes a link between particles that allows them to share states in such a way that measuring one particle instantly affects the others, irrespective of the distance between them.

Quantum computers could, in principle, outperform classical computers in some optimization and computational tasks. However, they are also known to be highly sensitive to environmental disturbances (i.e., noise), which can cause quantum errors and adversely affect computations.

Researchers at the International Quantum Academy, Southern University of Science and Technology, and Hefei National Laboratory have developed a new approach to detect these errors in a silicon-based quantum processor. This error detection strategy, presented in a paper published in Nature Electronics, was found to successfully detect quantum errors in silicon qubits, while also preserving entanglement after their detection.

Optical switch protocol verifies entangled quantum states in real time without destroying them

The fragility and laws of quantum physics generally make the characterization of quantum systems time‑consuming. Furthermore, when a quantum system is measured, it is destroyed in the process. A breakthrough by researchers at the University of Vienna demonstrates a novel method for quantum state certification that efficiently verifies entangled quantum states in real time without destroying all available states—a decisive step forward in the development of robust quantum computers and quantum networks.

The work was carried out in Philip Walther’s laboratories at the Faculty of Physics and the Vienna Center for Quantum Science and Technology (VCQ) and published in the journal Science Advances.

Entangled quantum states are the fundamental building blocks of many new quantum technologies, from ultra‑secure communication to powerful quantum computing. However, before these delicate states can be used, they must be rigorously verified to ensure their quality and integrity.

Man arrested for demanding reward after accidental police data leak

Dutch authorities arrested a 40-year-old man after he downloaded confidential documents that had been mistakenly shared by the police and refused to delete them unless he received “something in return.”

Police detained the suspect at his Prinses Beatrixstraat residence in Ridderkerk on Thursday evening for computer hacking after the failed “extortion” attempt, searching his home and seizing data storage devices to recover the files.

The incident began when the man contacted police on February 12 about images he had that may be relevant to an ongoing investigation. An officer responded to his inquiry but, instead of sending a link to upload the images, mistakenly shared a download link to confidential police documents.

/* */