Toggle light / dark theme

New haptic system lets soft objects respond to taps, squeezes and twists

New technology that invites expressive, two-way communication between a person and the soft, flexible object they are holding or wearing has been developed at the University of Bath.

Using this system, a user can tap, twist or pinch a soft object—such as a cushion, an item of clothing or a pliable computer mouse—and the object will respond in a meaningful way, for instance, by changing the TV channel, turning off a light or creating a digital sculpture on a screen.

Crucially, the object also provides (such as a soft click or vibration) to confirm the action, while maintaining its natural softness and flexibility.

Climate-smart housing design helps cities beat the heat

Painting walls in light colors, insulating roofs, choosing medium-sized windows, and aligning buildings to the sun’s path may seem like simple choices. But they could provide powerful defenses against climate change for millions of people in the world’s most vulnerable regions.

That’s the message of a study, appearing in the journal Energy and Buildings, which identifies low-cost, climate-smart design strategies as crucial for future housing in Latin America’s rapidly warming cities.

Researchers used computer simulations to test how various climate-resilient building projects would perform under current and projected climate conditions in five major cities—Rio de Janeiro and São Paulo, in Brazil, Santiago (Chile), Bogotá (Colombia), and Lima (Peru).

HALO: hierarchical causal modeling for single cell multi-omics data

Chromatin accessibility dynamics causally influence changes in gene expression levels, but these fluctuations may not be directly coupled over time. Here, authors develop computational causal framework HALO, examining epigenetic plasticity and gene regulation dynamics in single-cell multi-omic data.

Computational Creativity Research: Towards Creative Machines

Computational Creativity, Concept Invention, and General Intelligence in their own right all are flourishing research disciplines producing surprising and captivating results that continuously influence and change our view on where the limits of intelligent machines lie, each day pushing the boundaries a bit further. By 2014, all three fields also have left their marks on everyday life – machine-composed music has been performed in concert halls, automated theorem provers are accepted tools in enterprises’ R&D departments, and cognitive architectures are being integrated in pilot assistance systems for next generation airplanes.

Nobel Prize: Quantum Tunneling on a Large Scale

The 2025 Nobel Prize in Physics recognizes the discovery of macroscopic quantum tunneling in electrical circuits.

This story will be updated with a longer explanation of the Nobel-winning work on Thursday, 9 October.

Running up against a barrier, a classical object bounces back, but a quantum particle can come out the other side. So-called quantum tunneling explains a host of phenomena, from electron jumps in semiconductors to radioactive decays in nuclei. But tunneling is not limited to subatomic particles, as underscored by this year’s Nobel Prize in Physics. The prize recipients—John Clarke from the University of California, Berkeley; Michel Devoret from Yale University; and John Martinis from the University of California, Santa Barbara—demonstrated that large objects consisting of billions of particles can also tunnel across barriers [13]. Using a superconducting circuit, the physicists showed that the superconducting electrons, acting as a collective unit, tunneled across an energy barrier between two voltage states. The work thrust open the field of superconducting circuits, which have become one of the promising platforms for future quantum computing devices.

Computer advances and ‘invisibility cloak’ vie for physics Nobel

A math theory powering computer image compression, an “invisibility cloak” or the science behind the James Webb Space Telescope are some achievements that could be honored when the Nobel physics prize is awarded Tuesday.

The award, to be announced at 11:45 am (0945 GMT) in Stockholm, is the second Nobel of the season, after the Medicine Prize was awarded on Monday to a US-Japanese trio for research into the human immune system.

Mary Brunkow and Fred Ramsdell, of the United States, and Japan’s Shimon Sakaguchi were recognized by the Nobel jury for identifying immunological “security guards”

Observing quantum weirdness in our world: Nobel physics explained

The Nobel Prize in Physics was awarded to three scientists on Tuesday for discovering that a bizarre barrier-defying phenomenon in the quantum realm could be observed on an electrical circuit in our classical world.

The discovery, which involved an effect called , laid the foundations for technology now being used by Google and IBM aiming to build the quantum computers of the future.

Here is what you need to know about the Nobel-winning work by John Clarke of the UK, Frenchman Michel Devoret and American John Martinis.

/* */