Toggle light / dark theme

Turning tap water into hydrogen: New strategy lets PEM electrolyzers use impure water

In recent years, energy engineers have been working on a wide range of technologies that could help to generate and store electrical power more sustainably. These include electrolyzers, devices that could use electricity sourced via photovoltaics, wind turbines or other energy technologies to split water (H2O) into hydrogen (H2) and oxygen (O2), via a process known as electrolysis.

The hydrogen produced by electrolyzers could in turn be used in fuel cells, devices that convert the chemical energy in hydrogen into electricity without combustion and could be used to power trucks, buses, forklifts and various other heavy vehicles, or could provide back-up power for hospitals, data centers and other facilities.

Many recently designed electrolyzers prompt the splitting of water into hydrogen using a (PEM), a membrane that selectively allows protons (H+) to pass through, while blocking gases.

Nanometer thin spacer boosts blue OLEDs portability and efficiency

Organic light-emitting diodes (OLEDs) have transformed display and lighting technology with their vivid colors, deep contrast, and energy efficiency. As demand grows for lighter, thinner, and more energy-saving devices—especially in wearables, foldables, and portable electronics—there’s increasing interest in OLEDs that can operate at lower voltages without compromising performance.

Magnetic chains on superconductors: New heterostructure design advances quantum technology

Magnetic-superconducting hybrid systems are key to unlocking topological superconductivity, a state that could host Majorana modes with potential applications in fault-tolerant quantum computing. However, creating stable, controllable interfaces between magnetic and superconducting materials remains a challenge.

Traditional systems often struggle with lattice mismatches, complex interfacial interactions, and disorder, which can obscure the signatures of topological states or mimic them with trivial phenomena. Achieving over at the atomic scale has been a long-standing challenge in this field.

Published in Materials Futures, the researchers developed a novel sub-monolayer CrTe2/NbSe2 heterostructure. By carefully depositing Cr and Te on NbSe2 substrate, they observed a two-stage growth process: an initial compressed Cr-Te layer forms with a lattice constant of 0.35 nm, followed by the formation of an atomically flat CrTe2 monolayer with a lattice constant of 0.39 nm. Annealing the Cr-Te layer can trigger stress-relief reconstruction, which creates stripe-like patterns with edges that host localized , effectively forming one-dimensional magnetic chains.

Simulating Shade: Researchers Model Tree Impact on Vegas Heat

How can trees provide relief from extreme heat in urban climates? This is what a recent study published in Environmental Research Climate hopes to address as a team of researchers investigated using urban street trees to provide shade relief from extreme temperatures, which continue to increase due to climate change. This study has the potential to help researchers, climate scientists, legislators, city planners, and the public better understand the benefits of trees for cooling urban spaces in the face of the increasing threat of climate change.

For the study, the researchers used a series of computer models between July and August 2022 to simulate how street tree planting in Las Vegas could provide relief from extreme heat and heat exposure. The goal of the study was to ascertain the overall effectiveness of planting non-native trees in an urban setting while estimating the amount of water they would need to survive and provide shade relief from extreme heat. In the end, the researchers found that desert environments are too hot for trees to adequately provide shade relief, primarily due to the trees’ water conservation efforts.

“Urban trees are not a silver bullet for cooling our cities, particularly for desert cities like Las Vegas,” said Dr. Juan Henao, who is a postdoctoral researcher at the Desert Research Institute and lead author of the study. “But they provide significant shade and of course other benefits. I know that I prefer to see trees, and they can help store carbon. We just need to remember that in order to cool the air, they need to release water vapor, and we need to give them enough water to do that. Any hot, dry city will need to consider these tradeoffs and really do their research to identify the right species for planting efforts.”

Single-molecule magnet could lead to stamp-sized hard drives capable of storing 100 times more data

Chemists from The University of Manchester and The Australian National University (ANU) have engineered a new type of molecule that can store information at temperatures as cold as the dark side of the moon at night, with major implications for the future of data storage technologies.

Quantum simulation of chemical dynamics achieved for the first time

Researchers at the University of Sydney have successfully performed a quantum simulation of chemical dynamics with real molecules for the first time, marking a significant milestone in the application of quantum computing to chemistry and medicine.

Understanding in real time how atoms interact to form new compounds or interact with light has long been expected as a potential application of quantum technology. Now, quantum chemist Professor Ivan Kassal and Physics Horizon Fellow Dr Tingrei Tan, have shown it is possible using a quantum machine at the University of Sydney.

The innovative work leverages a novel, highly resource-efficient encoding scheme implemented on a trapped-ion quantum computer in the University of Sydney Nanoscience Hub, with implications that could help transform medicine, energy and materials science.


University of Sydney scientists have made a big step towards future design of treatments for skin cancer or improved sunscreen by modelling photoactive chemical dynamics with a quantum computer.

Control of spin qubits at near absolute zero provides path forward for scalable quantum computing

Developing technology that allows quantum information to be both stable and accessible is a critical challenge in the development of useful quantum computers that operate at scale. Research published in the journal Nature provides a pathway for scaling the number of quantum transistors (known as qubits) on a chip from current numbers under 100 to the millions needed to make quantum computation a practical reality. The result is enabled by new cryogenic control electronics that operate at close to absolute zero, developed at the University of Sydney.

Lead researcher Professor David Reilly from the University of Sydney Nano Institute and School of Physics said, “This will take us from the realm of quantum computers being fascinating laboratory machines to the stage where we can start discovering the real-world problems that these devices can solve for humanity.”

The paper is the result of industry cooperation between the University of Sydney and the University of New South Wales through the respective quantum tech spin-out companies Emergence Quantum and Diraq. Professor Reilly’s company, Emergence Quantum, was established this year to commercialize quantum control technologies and other advanced electronics like the chip presented in this Nature paper.