Toggle light / dark theme

Why only a small number of planets are suitable for life

For life to develop on a planet, certain chemical elements are needed in sufficient quantities. Phosphorus and nitrogen are essential. Phosphorus is vital for the formation of DNA and RNA, which store and transmit genetic information, and for the energy balance of cells. Nitrogen is an essential component of proteins, which are needed for the formation, structure, and function of cells. Without these two elements, no life can develop out of lifeless matter.

A study led by Craig Walton, postdoc at the Center for Origin and Prevalence of Life at ETH Zurich, and ETH professor Maria Schönbächler has now shown that there must be sufficient phosphorus and nitrogen present when a planet’s core is formed. The study is published in Nature Astronomy.

“During the formation of a planet’s core, there needs to be exactly the right amount of oxygen present so that phosphorus and nitrogen can remain on the surface of the planet,” explains Walton, lead author of the study. This was exactly the case with Earth around 4.6 billion years ago—a stroke of chemical good fortune in the universe. This finding may affect how scientists search for life elsewhere in the universe.

‘Remnant’ Cholesterol Cut by More Than 60 Percent in New Drug Trial

Hopes are high for a powerful new compound aimed at lowering blood fat levels responsible for potentially fatal heart disease. In a recent trial, the oral drug, TLC-2716, lowered blood triglycerides by almost 40 percent and remnant cholesterol by more than 60 percent.

The drug was tested in a clinical trial involving 100 healthy adults to assess its effects on a metabolic switch that is active in the liver and gut, and involved in making and handling fats. The trial was the first of its kind on humans, and more testing is required.

Researchers initially isolated the switch, called Liver X Receptor ⍺ (LXR⍺), through analysis of large human genetics databases. Then they linked it to blood-fat-related metabolic disorders using Mendelian randomization, a powerful technique for linking gene expression and outcomes.

The STAT3-VDAC1 axis modulates mitochondrial function and plays a critical role in the survival of acute myeloid leukemia cells

New insights into the role of signal transducer and activator of transcription (STAT)-3 in regulating mitochondrial function in acute myeloid leukemia (AML): by linking STAT3 signaling to mitochondrial metabolism and apoptosis control, this study provides new mechanistic insight into how AML cells maintain their energy balance and resist cell death. These findings highlight mitochondrial regulation as a potential therapeutic vulnerability in AML.


Signal transducer and activator of transcription 3 (STAT3) is a well-described transcription factor that mediates oxidative phosphorylation and glutamine uptake in bulk acute myeloid leukemia cells and leukemic stem cells. STAT3 has also been shown to translocate to the mitochondria in acute myeloid leukemia cells, and phosphorylation at the serine 727 (pSTAT3 S727) residue has been shown to be especially important for the mitochondrial functions of STAT3. We demonstrate that inhibition of STAT3 results in impaired mitochondrial function and decreased leukemia cell viability. We discovered a novel interaction of STAT3 with voltage-dependent anion channel 1 (VDAC1) in the mitochondria which provides a mechanism through which STAT3 modulates mitochondrial function and cell survival. Through VDAC1, STAT3 regulates calcium and oxidative phosphorylation in the mitochondria. STAT3 and VDAC1 inhibition also results in significantly reduced engraftment potential of leukemia stem cells, including primary samples resistant to venetoclax. These results implicate STAT3 as a therapeutic target in acute myeloid leukemia.

Acute myeloid leukemia (AML) is a genetically heterogenous and highly aggressive myeloid neoplasm with poor prognosis.1,2 Standard therapy for AML has historically consisted of induction chemotherapy with an anthracycline and cytarabine, followed by consolidation with either hematopoietic stem cell transplant or high-dose cytarabine.3 Recently, therapeutic options have broadened with the advent of novel targeted therapies.4–7 However, despite high response rates, relapse is common.6 Relapsed disease is believed to originate from a quiescent subpopulation of therapy-resistant leukemic stem cells (LSC)8 which are found in greater abundance at the time of relapse than at diagnosis,9–12 and negatively correlate with survival.10,11 LSC demonstrate a unique vulnerability in their preferential reliance on mitochondrial activity and oxidative phosphorylation (OXPHOS).12–14 While Bcl-2 inhibition with venetoclax in combination with the hypomethylating agent azacitidine has demonstrated selectivity for LSC through inhibition of OXPHOS,13 resistance frequently develops via alterations in mitochondrial metabolism or activation of alternative anti-apoptotic pathways.15–19 Furthermore, prior studies of patients who progress after frontline hypomethylating agent/venetoclax have shown very poor outcomes, with a median survival following failure of this combination of 3 months or less.20–22 New strategies targeting LSC via their reliance on OXPHOS are of significant interest and have been described in several reports,7,13,23 however, further research is needed to elucidate the mechanisms underlying the observations.

Signal transducer and activator of transcription 3 (STAT3) has been shown to be important for leukemogenesis and is known to be highly expressed in many AML patients’ samples and cell lines.24–27 Canonically, STAT3 is known to undergo phosphorylation at residue Tyr705 leading to dimerization and translocation to the nucleus where it functions as a transcription factor regulating cell development, renewal, proliferation, and cell death.25,28–30 Our previous work additionally established that the transcriptional activity of STAT3 regulates mitochondrial function via a MYC-SLC1A5-mediated pathway.27 Despite its well-described nuclear role as a transcription factor, STAT3 has also been discovered to localize to the mitochondria.31,32 Prior work has suggested a variety of functions in the mitochondria, including modulation of electron transport chain activity,31–33 regulation of mitochondrial genes,34 and regulation of mitochondrial calcium flux.35,36 While phosphorylation of STAT3 at both Tyr705 (pSTAT3 Y705) and Ser727 (pSTAT3 S727) sites have been found in the mitochondria,31–33,36,37 Ser727 phosphorylation is critical for modulation of mitochondrial functions such as electron transport chain activities.31,32 These data suggest that STAT3 plays a critical role in mitochondria, although this role in AML is not well characterized.

Beta-2-Microglobulin Is Bad For Neurogenesis: What’s My Data? (6-Test Analysis)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

Blood testing with LifeExtension.com: https://www.anrdoezrs.net/click-101614996-15750394

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1

The Wnt–NAD+ axis in cancer, aging, and tissue regeneration

Wnt–NAD+ axis in stem cell function.

The Wnt–NAD+ axis is a fundamental regulatory hub in which metabolic state meets developmental signaling and it acts as a metabolic sensor that coordinates tissue regeneration with cellular energy status through compartment specific NAD+ pools.

Wnt signaling regulates NAD+ metabolism by controlling the expression of key biosynthetic enzymes and NAD+ consumers, while NAD+-dependent proteins modulate Wnt activity through direct interactions and epigenetic modifications.

Sirtuins exhibit tissue-specific and subcellular compartment-dependent roles in Wnt regulation where they function as activators or suppressors depending on the cellular bioenergetic state.

The Wnt–NAD+ axis maintains stem cell function and self-renewal capacity through metabolic/signaling integration, and its disruption during aging leads to declining regenerative capacity.

The progressive dysregulation of compartment-specific Wnt–NAD+ coordination contributes to stem cell exhaustion and multiple pathological conditions, indicating that therapeutic strategies must consider tissue-specific and subcellular targeting. sciencenewshighlights ScienceMission https://sciencemission.com/Wnt%E2%80%93NAD-axis


Immune gene diversity and STING1 variants in shaping cancer immunity across different genetic ancestry populations

Hu et al. analyzed non-synonymous SNPs across diverse human populations and revealed divergent evolutionary pressures on immune-and cancer-related genes. By integrating population diversity with functional evaluation, they identified STING1 variants as modulators of interferon signaling. Their findings suggest that germline variations shaped by genetic ancestry may influence cancer immunity.

PRISM reanalyzes 4,400 tumors, reshaping the debate over tumor microbiomes

When scientists sequence tumor DNA, they typically find small amounts of genetic code from bacteria, viruses and fungi—microorganisms that—if actually present in tumor tissues—could influence how they grow, evade immunity or respond to treatment. But do microorganisms truly reside in tumors, or do the samples become contaminated before sequencing occurs?

Independent analyses of the same genomic data have reached wildly different conclusions. Now, researchers at Rutgers Cancer Institute have developed a computational tool that settles the controversy by distinguishing genuine microbial signals from artifacts. Their findings are published in Cancer Cell.

“There are microbes all over the environment, on our skin and in our breath,” said Subhajyoti De, a member of the Genomic Instability and Cancer Genetics Program at Rutgers Cancer Institute and the senior author of the study. “There could be DNA particles floating in the air. How do you know whether you’re finding came from the tissue you were interested in, or whether something was introduced along the way?”

DNA marker in malaria mosquitoes may be pivotal in tackling insecticide resistance

A new study has detected a DNA marker in a gene encoding a key enzyme known as cytochrome P450 that helps mosquitoes to break down and survive exposure to pyrethroids, the main insecticides used for treating bed nets. This new finding, published on the bioRxiv preprint server and slated for publication in Science Translational Medicine, will help to better implement insecticide resistance management strategies and contribute to reducing the burden of malaria in sub-Saharan Africa, home to 90% of cases globally.

The work was jointly led by Liverpool School of Tropical Medicine and the Centre for Research in Infectious Diseases (CRID) in Cameroon.

Professor Charles Wondji, Professor of Genetics and Vector Biology at Liverpool School of Tropical Medicine and lead author on the study, said, “Our study designed field-applicable tools to easily track the spread of metabolic resistance in the major malaria mosquito species and assess its impact on control interventions. These important findings can help to maintain the effectiveness of insecticide-based tools such as bed nets, which remain a cornerstone of malaria prevention.”

New CRISPR tool spreads through bacteria to disable antibiotic resistance genes

Antibiotic resistance (AR) has steadily accelerated in recent years to become a global health crisis. As deadly bacteria evolve new ways to elude drug treatments for a variety of illnesses, a growing number of “superbugs” have emerged, ramping up estimates of more than 10 million worldwide deaths per year by 2050.

Scientists are looking to recently developed technologies to address the pressing threat of antibiotic-resistant bacteria, which are known to flourish in hospital settings, sewage treatment areas, animal husbandry locations, and fish farms. University of California San Diego scientists have now applied cutting-edge genetics tools to counteract antibiotic resistance.

The laboratories of UC San Diego School of Biological Sciences Professors Ethan Bier and Justin Meyer have collaborated on a novel method of removing antibiotic-resistant elements from populations of bacteria. The researchers developed a new CRISPR-based technology similar to gene drives, which are being applied in insect populations to disrupt the spread of harmful properties, such as parasites that cause malaria. The new Pro-Active Genetics (Pro-AG) tool called pPro-MobV is a second-generation technology that uses a similar approach to disable drug resistance in populations of bacteria.

Cancer Vaccines Improve Personalized Medical Care

The concept of cancer vaccines has developed over the last century with initial promise from a young doctor, William Coley. In the late 19th to early 20th century Dr. Coley developed a treatment that elicited strong immune response. This elixir was referred to as Coley’s toxin, which comprised of bacteria that generated an inflammatory response in patients. As a result, the generated response recognized and targeted the patient’s tumor. However, his treatment did not yield consistent clinical benefit. He also had his critics among physicians. At the time, the scientific community debated how safe the toxin was and whether it really worked. Colleagues at Memorial Sloan Kettering and other top institutions questioned Coley’s motive for the toxin, since there was little empirical data or scientific basis for its use. Although Coley’s toxin proved to be an inconsistent treatment, it laid the foundation for future immunotherapies as preventative and therapeutic cancer vaccines were developed.

Cancer vaccines were limited in their ability to effectively treat patients with cancer. Preventative cancer vaccines are difficult to developed because of the uncertainty to predict the onset of mutations in patients. Currently, the only U.S. Food and Drug Administration (FDA) approved preventative cancer vaccine is for the Human Papillomavirus (HPV) vaccine. While it directly protects against HPV, the vaccine indirectly prevents a multitude of cancers, including cervical, anal, and genital. Additionally, researchers have previously struggled to generate a therapeutic vaccine that elicits a strong immune response with limited adverse effects. However, a reinvigorated interest has emerged in therapeutic vaccines due to improved delivery platforms and better biomarkers to target on cancer.

Recently, an article in Cell Reports Medicine, by Dr. Nina Bhardwaj and others, examined the evolution of cancer vaccines. Specifically, the paper focused on tumor biomarker-based vaccines, which are highly personalized and designed to target genetic mutations specific to a patient’s tumor. Bhardwaj is a physician scientist, the Ward-Coleman Chair in Cancer Research, and Director of Vaccine and Cell Therapy Laboratory at the Icahn School of Medicine at Mount Sinai. Her work focuses on improving vaccine strategies to provide strong single agent affect against tumors. Bhardwaj’s group studies different cellular pathways to understand how to therapeutically target cancer.

/* */