Toggle light / dark theme

Novel method upgrades liquid crystals with better recall

Researchers have developed a novel way for liquid crystals to retain information about their movement. Using this method could advance technologies like memory devices and sensors, as well as pave the way to future soft materials that are both smart and flexible.

Liquid crystals, which are used in liquid crystal display (LCD) screens for TVs and phones, contain molecules that mimic the properties of both liquids and solids, giving them . While soft materials like liquids, gels and polymers have been widely used for their easy-to-process structures and lightweight properties, they tend to deform easily and often require replacement.

Everyday materials are made of molecules that align themselves in preferred directions. But liquid crystals could become much more useful if their molecules are all facing in one direction—obtaining what is called polar order.

Hackensack Meridian John Theurer Cancer Center Archives

Georgetown Lombardi, Washington’s only National Cancer Institute-designated Comprehensive Cancer Center, serves as the research engine for MedStar Health, Georgetown University’s clinical partner. Georgetown Lombardi is also an NCI-recognized research consortium with John Theurer Cancer Center of Hackensack Meridian Health in Bergen County, New Jersey.

They have a blog with alot of useful cancer information you can share. There is info about them circulating about cancer vaccines and clinical trials. Check em out:

(You can repost their posts or contact them to recieve information from them directly. Lombardi Comprehensive Cancer Center 3,800 Reservoir Rd. NW Washington D.C. 20,057 Phone: 202−444−2223)

Quasi-solid electrolyte developed for safer and greener lithium-ion batteries

3D-SLISE is a quasi-solid electrolyte developed at the Institute of Science Tokyo, which enables safe, fast-charging/discharging of 2.35 V lithium-ion batteries to be fabricated under ambient conditions. With energy-efficient manufacturing using raw materials free from flammable organic solvents, the technique eliminates the need for dry rooms or high-temperature processing. Moreover, it also allows direct recovery of active materials through water dispersal—ensuring a sustainable, recyclable approach to battery production.

In today’s era of portable power and , form the backbone of modern technology—powering everything from smartphones to electric vehicles. While demand for lithium-ion batteries continues to grow, so do concerns about their safety, environmental impact, and recyclability. Most lithium-ion batteries that rely on flammable organic solvents are energy-intensive to manufacture, and require complicated recycling processes. These issues not only drive up costs but also pose serious safety and —highlighting the need for safer and cleaner alternatives.

To address this challenge, a research team from Institute of Science Tokyo (Science Tokyo), Japan, led by Specially Appointed Professor Yosuke Shiratori and Associate Professor Shintaro Yasui from the Zero-Carbon Energy Research Institute, Science Tokyo, developed a new quasi-solid electrolyte called 3D-Slime Interface Quasi-Solid Electrolyte (3D-SLISE), which can transform battery manufacturing. With a simple borate-water matrix, the electrolyte supports the production of 2.35 V lithium-ion batteries under standard air conditions. The detailed findings of the study were made available in the journal Advanced Materials on July 9, 2025.

Invisible polymer film offers powerful conductivity for smart devices

Scientists at La Trobe University have produced a new, powerful electricity-conducting material in research which could revolutionize smartphones and wearable technologies like medical devices.

The new technique uses , well known due to its popularity in skincare, applied directly to a gold-plated surface to create a thinner, more durable film, or polymer, used to conduct electricity in devices like biosensors.

Lead researcher Associate Professor Wren Greene said the technique could lead to major improvements in the function, cost and usability of devices like touchscreens and wearable biosensors.

Invisible Polymer Film Could Revolutionize Smart Devices with Metal-Like Conductivity

From smartphones and smartwatches to medical biosensors, the demand for thinner, lighter, and more powerful electronic components continues to grow. Now, scientists at La Trobe University have developed a groundbreaking invisible polymer film that conducts electricity as effectively as metals, yet is flexible, durable, and scalable for mass production. This innovation could transform not only consumer electronics but also advanced health monitoring devices and wearable technology.

The Breakthrough: Tethered Dopant Templating

For decades, conductive polymers — synthetic materials capable of carrying an electrical current — have been hailed as a promising alternative to metals in electronics. However, they have struggled to achieve the necessary combination of thinness, transparency, conductivity, and durability required for high-performance devices.

Microscopic imaging reveals how electric double layers form at battery nucleation sites

Electrochemical cells—or batteries, as a well-known example—are complex technologies that combine chemistry, physics, materials science and electronics. More than power sources for everything from smartphones to electric vehicles, they remain a strong motivation for scientific inquiry that seeks to fully understand their structure and evolution at the molecular level.

A team led by Yingjie Zhang, a professor of and engineering in The Grainger College of Engineering at the University of Illinois Urbana-Champaign, has completed the first investigation into a widely acknowledged but often overlooked aspect of : the nonuniformity of the liquid at the solid-liquid interfaces in the cells.

As the researchers report in the Proceedings of the National Academy of Sciences, microscopic imaging revealed that these interfacial structures, called electrical double layers (EDLs), tend to organize into specific configurations in response to chemical deposition on the of the solid. The paper is titled “Nucleation at solid–liquid interfaces is accompanied by the reconfiguration of electrical double layers.”

Grok AI Video: xAI Expands Imagine Video tool to Android users

Elon Musk added that for a limited time, Grok Imagine video generation is free to all users in the US region.

(You can access anything in any region with a VPN 🙄)

Generative Artificial Intelligence (gen AI) firm xAI, earlier this week, introduced the Imagine video generation feature in the Grok AI app for iPhones.

Now, the company has expanded the availability of the video generation feature to the Android version of the Grok AI app. Elon Musk confirmed the news on his social media platform X. Also, Musk added that for a limited time, Grok Imagine video generation is free for a limited time for US region users.


AI Innovation: xAI brings Imagine video generation to Grok AI Android app, now free for US users for a limited time.

GIGANTIC: Humanoid Robots $100 Trillion+ (deep dive)

Questions to inspire discussion.

Data and Autonomy.

📊 Q: Why is vision data valuable in AI development? A: Vision data is worth more than zero if you can collect and process yataflops and yataflops of data, but worthless without collection capabilities, making the world’s visual data valuable for those who can collect and process it.

🚗 Q: How does solving autonomy relate to AI development? A: Solving autonomy is crucial and requires tons of real world data, which necessitates tons of robots collecting real world data in the real world, creating a cycle of data collection and AI improvement.

Company-Specific Opportunities.

🔋 Q: What advantage does Tesla have in developing humanoid robots? A: Tesla has essentially built the robot’s brain in their vehicles, allowing them to transplant this brain into humanoid robots, giving them a massive head start in development.

Mobile phone app reduces suicidal behavior among high-risk patients, new study shows

A mobile phone app designed to deliver suicide-specific therapy reduced suicidal behavior among high-risk psychiatric inpatients, according to a new study by scientists at Yale School of Medicine and The Ohio State University Wexner Medical Center and College of Medicine.

The study, published in JAMA Network Open, found that the app, OTX-202, reduced the recurrence of post-discharge suicide attempts by 58.3% among patients who had previously attempted suicide. This reduction is a critical achievement for a group that is particularly vulnerable to repeated suicidal behaviors, the researchers said.

Users of the app also experienced sustained reductions in for up to 24 weeks after psychiatric hospitalization, according to the study. In contrast, patients who used an active control app in addition to treatment as usual showed early improvement, but suicidal thoughts rebounded by week 24.

Organic molecule achieves both strong light emission and absorption for displays and imaging

Researchers at Kyushu University have developed a novel organic molecule that simultaneously exhibits two highly sought-after properties: efficient light emission suitable for advanced displays and strong light absorption for deep-tissue bioimaging. This breakthrough addresses a long-standing challenge in molecular design, paving the way for next-generation multifunctional materials.

Their study, published online in the journal Advanced Materials on July 29, 2025, was conducted in collaboration with the National Taipei University of Technology and the National Central University.

Organic light-emitting diodes (OLEDs) are at the forefront of modern display and lighting technologies, powering nearly everything from smartphone screens to large televisions and monitors. A key phenomenon that is actively being researched to enhance OLED efficiency is thermally activated delayed fluorescence (TADF).

/* */