Toggle light / dark theme

Fossil fungi trapped in amber reveal ancient origin of parasitic zombie-ants

Chinese Academy of Sciences researchers report that fossilized entomopathogenic fungi from mid-Cretaceous amber reveal some of the oldest direct evidence of parasitic relationships between fungi and insects, suggesting that Ophiocordyceps fungi originated approximately 133 million years ago and underwent early host shifts that shaped their evolution.

The mystery of Mercury’s missing meteorites, and how we may have finally found some

Most meteorites that have reached Earth come from the asteroid belt between Mars and Jupiter. But we have 1,000 or so meteorites that come from the moon and Mars. This is probably a result of asteroids hitting their surfaces and ejecting material toward our planet.

It should also be physically possible for such debris to reach the Earth from Mercury, another nearby rocky body. But so far, none have been confirmed to come from there—presenting a longstanding mystery.

A new study that my colleagues and I conducted has discovered two meteorites that could have a Mercurian origin. If confirmed, they would offer a rare window into Mercury’s formation and evolution, potentially reshaping our understanding of the planet nearest the sun. Our work is published in the journal Icarus.

Dissecting the cell cycle regulation, DNA damage sensitivity and lifespan effects of caffeine in fission yeast

Caffeine has long been associated with health benefits, including a reduced risk of age-related diseases. However, the specifics of how caffeine interacts with cellular mechanisms and nutrient and stress-responsive gene networks have remained elusive — until now.

In this pioneering research, published in the journal Microbial Cell, scientists used fission yeast, a single-celled organism with surprising similarities to human cells, to delve deeper into caffeine’s impact.

The researchers discovered that caffeine influences aging by engaging an ancient cellular energy system.

A few years ago, the same team found that caffeine prolongs cell life by acting on a growth regulator known as TOR (Target of Rapamycin). TOR is a molecular switch that regulates cell growth based on available food and energy and has been part of the evolutionary landscape for over 500 million years.

However, their latest study unveiled a surprising new finding: caffeine does not directly act on the TOR switch. Instead, it activates AMPK, a cellular fuel gauge that is conserved through evolution in both yeast and humans.

“When your cells are low on energy, AMPK kicks in to help them cope,” senior author Charalampos (Babis) Rallis, a reader in genetics, genomics and fundamental cell biology at Queen Mary University of London, said in a news release. “And our results show that caffeine helps flip that switch.”

Intriguingly, AMPK is also the target of metformin, a common diabetes medication currently under scrutiny for its potential to extend human lifespan when used alongside rapamycin.

Malware on Google Play, Apple App Store stole your photos—and crypto

A new mobile crypto-stealing malware called SparkKitty was found in apps on Google Play and the Apple App Store, targeting Android and iOS devices.

The malware is a possible evolution of SparkCat, which Kaspersky discovered in January. SparkCat used optical character recognition (OCR) to steal cryptocurrency wallet recovery phrases from images saved on infected devices.

When installing crypto wallets, the installation process tells users to write down the wallet’s recovery phrase and store it in a secure, offline location.

Reports in Advances of Physical Sciences

In this paper, the authors propose a three-dimensional time model, arguing that nature itself hints at the need for three temporal dimensions. Why three? Because at three different scales—the quantum world of tiny particles, the realm of everyday physical interactions, and the grand sweep of cosmological evolution—we see patterns that suggest distinct kinds of “temporal flow.” These time layers correspond, intriguingly, to the three generations of fundamental particles in the Standard Model: electrons and their heavier cousins, muons and taus. The model doesn’t just assume these generations—it explains why there are exactly three and even predicts their mass differences using mathematics derived from a “temporal metric.”


This paper introduces a theoretical framework based on three-dimensional time, where the three temporal dimensions emerge from fundamental symmetry requirements. The necessity for exactly three temporal dimensions arises from observed quantum-classical-cosmological transitions that manifest at three distinct scales: Planck-scale quantum phenomena, interaction-scale processes, and cosmological evolution. These temporal scales directly generate three particle generations through eigenvalue equations of the temporal metric, naturally explaining both the number of generations and their mass hierarchy. The framework introduces a metric structure with three temporal and three spatial dimensions, preserving causality and unitarity while extending standard quantum mechanics and field theory.

The Cosmic Owl: Astronomers discover a peculiar galaxy merger

An international team of astronomers reports the detection of a peculiar merger of two similar ring galaxies that morphologically resemble an owl’s face. The discovery of this galaxy merger, dubbed the “Cosmic Owl,” is presented in a research paper published June 11 on the arXiv preprint server.

Galaxy mergers play a crucial role in the evolution of galaxies. These events redistribute the gas around galaxies, impact the stellar kinematics, transform galaxy morphology, and eventually lead to effective stellar mass assembly.

Some lead to the formation of collisional ring galaxies (CRGs), which are relatively rare as only a few hundred of them have been detected in the local universe. Rings in such galaxies are created when one galaxy passes directly through the disk of another in a nearly head-on collision, causing gas and stars to be shocked outward into a circular or near-circular pattern.

Two transparent worms shed light on evolution

Two species of worms have retained remarkably similar patterns in the way they switch their genes on and off despite having split from a common ancestor 20 million years ago, a new study finds.

The findings appear in the journal Science.

“It was just remarkable, with this evolutionary distance, that we should see such coherence in gene expression patterns,” said Dr. Robert Waterston, professor of genome sciences at the University of Washington School of Medicine in Seattle and a co-senior author of the paper. “I was surprised how well everything lined up.”