Toggle light / dark theme

Newly Discovered Organism Could Represent a Whole New Branch in The Tree of Life

It’s not every day that biologists announce an entirely new branch of life, and this one has been hiding under their noses for years.

It was discovered hiding in a lab sample of marine ciliates scientists had been tending to since collecting them from Croatian waters in 2011. But it wasn’t until the ciliates suddenly died that this new, tiny creature, which scientists have named Solarion arienae, came into view.

“This organism allows us to look into a very ancient chapter of cellular evolution that we previously could reconstruct only indirectly,” say protistologists Ivan Čepička and Marek Valt, from Charles University in the Czech Republic, lead authors of the study.

Why Do We Have a Consciousness?

What does it mean that we have consciousness — and why does nature care that we do? In a remarkable new convergence of philosophy, psychology, and comparative neuroscience, researchers at Ruhr University Bochum argue that consciousness is not a mysterious luxury, but a powerful evolutionary adaptation.

According to their analysis, conscious experience first emerged as a mechanism of basic arousal — a primordial alarm system to protect living organisms from immediate danger. ([RUB Newsportal][1]) As evolution proceeded, consciousness evolved further: general alertness enabled organisms to filter through overwhelming flows of sensory data, focus selectively, and detect complex correlations — a capacity indispensable for learning, planning, and survival in a dynamic world.

Finally, in some lineages including our own, a third layer arose: reflexive, self-consciousness. This allows us not only to perceive the world, but to perceive ourselves — our bodies, thoughts, sensations — across time. With it comes memory, foresight, self-awareness, and the ability to integrate personal history into projects and social lives.

What is especially striking: these researchers show that consciousness need not depend on a “human-style” cortex. Studies of birds — whose brain architecture is very different from mammals — reveal comparable functional capacities: sensory awareness, integrated information processing, and even rudimentary forms of self-perception. ([RUB Newsportal][1]) This suggests that consciousness, far from being a human special-case, may be a widespread evolutionary solution — one that can arise in diverse biological substrates when the right functional constraints are met.

In this light, consciousness emerges not as an ineffable mystery or a metaphysical afterthought, but as a natural phenomenon with concrete functions: for feeling, for alertness, for learning, for self-representation. Understanding it may not only tell us who we are — but also why it ever made sense for life to become conscious.

Press Release: Ruhr University Bochum


Brain’s GPS hasn’t changed in millions of years: Specialized neurons may be vital to evolutionary survival

The same brain cells linked to disorientation in Alzheimer’s disease have been preserved—and even slightly increased—across millions of years of evolution.

A new University of Michigan study suggests these neurons are vital to evolutionary survival. Nature has guarded and amplified them through countless generations, helping mammals instinctively know where they are in their environments. The research is published in The Journal of Neuroscience.

This Changes Everything! What Euclid Saw in 1.2 Million Galaxies Will Surprise You

Euclid’s first data release is here — and it’s already transforming our understanding of galaxy evolution, black hole growth, and the hidden structure of the Universe. From secondary galactic nuclei to rare ionized systems and newly revealed dwarf galaxies, Euclid is opening a new chapter in cosmology. To learn more about Euclid’s First Data Release, you can watch our full video on YouTube.

Paper link : https://arxiv.org/pdf/2503.

Chapters:
00:00 Introduction.
00:49 DISCOVERY
03:59 SCIENTIFIC IMPORTANCE & THEORIES
07:17 IMPLICATIONS & WHAT’S NEXT
10:49 Outro.
11:03 Enjoy.

MUSIC TITLE : Starlight Harmonies.

MUSIC LINK : https://pixabay.com/music/pulses-star… our website for up-to-the-minute updates: www.nasaspacenews.com Follow us Facebook: / nasaspacenews Twitter: / spacenewsnasa Join this channel to get access to these perks: / @nspacenews #NSN #NASA #Astronomy.

Visit our website for up-to-the-minute updates:

Endings and beginnings: Atacama Cosmology Telescope releases its final data, shaping the future of cosmology

There’s always a touch of melancholy when a chapter that has absorbed years of work comes to an end. In the case of the Atacama Cosmology Telescope (ACT), those years amount to nearly 20—and now the telescope has completed its mission. Yet some endings are also important beginnings, opening new paths for the entire scientific community.

The three papers published in the Journal of Cosmology and Astroparticle Physics by the ACT Collaboration describe and contextualize in detail the sixth and final major ACT data release—perhaps the most important one—marking significant advances in our understanding of the universe’s evolution and its current state.

ACT’s data clarify several key points: the measurement of the Hubble constant (the number that indicates the current rate of cosmic expansion—the universe’s “speedometer”) obtained from observations at very large cosmological distances is confirmed, and it remains markedly different from the value derived from the nearby universe. This is both a problem and a remarkable discovery: it confirms the so-called “Hubble tension,” which challenges the model we use to describe the cosmos.

Unlocking the genome’s hidden half with new DNA sequencing technology

Cornell researchers have found that a new DNA sequencing technology can be used to study how transposons move within and bind to the genome. Transposons play critical roles in immune response, neurological function and genetic evolution, and implications of the finding include agricultural advancements and understanding disease development and treatment.

In a paper published in iScience, senior author Patrick Murphy, Ph.D. ‘13, associate professor of molecular biology and genetics in the College of Agriculture and Life Sciences, and co-authors demonstrate that a high-resolution genome mapping technique called CUT&Tag can overcome shortcomings in existing sequencing methods to enable study of transposons.

Once derided as “junk DNA,” transposons make up half the human genome and are descended from ancient viruses encountered by our evolutionary ancestors.

Rethinking where language comes from: Framework reveals complex interplay of biology and culture

A new study challenges the idea that language stems from a single evolutionary root. Instead, it proposes that our ability to communicate evolved through the interaction of biology and culture, and involves multiple capacities, each with different evolutionary histories. The framework, published in Science, unites discoveries across disciplines to explain how the ability to learn to speak, develop grammar, and share meaning converged to create complex communication.

For centuries, philosophers and scientists have wrestled with understanding how human language came about. Language defines us as a species, yet its origins have remained a mystery. In a remarkable international collaboration, 10 experts from different disciplines present a unified framework to address this enduring puzzle, harnessing powerful new methods and insights from their respective scientific domains.

“Crucially, our goal was not to come up with our own particular explanation of language evolution,” says first author Inbal Arnon, “Instead, we wanted to show how multifaceted and biocultural perspectives, combined with newly emerging sources of data, can shed new light on old questions.”

Dusty star-forming galaxy at high redshift discovered

An international team of astronomers reports the discovery of a new dusty star-forming galaxy at high redshift. The newfound galaxy, designated AC-2168, was detected using the Atacama Large Millimeter/submillimeter Array (ALMA) and the Northern Extended Millimeter Array (NOEMA). The finding was detailed in a paper published Nov. 11 on the pre-print server arXiv.

The so-called dusty star-forming galaxies (DSFGs) are highly obscured galaxies undergoing a period of intense star formation, with star-formation rates reaching even 1,000 solar masses per year. They represent the most intense starbursts in the universe and are crucial to improving our understanding of galaxy formation and evolution.

However, although many DSFGs are known, their nuclear structure, which can be essential to better understand the evolution of these galaxies, is still not fully explored. Hence, finding new DSFGs and investigating them in detail could shed more light on this matter.

Chang’e-6 samples reveal first evidence of impact-formed hematite and maghemite on the moon

A joint research team from the Institute of Geochemistry of the Chinese Academy of Sciences (IGCAS) and Shandong University has for the first time identified crystalline hematite (α-Fe2O3) and maghemite (γ-Fe2O3) formed by a major impact event in lunar soil samples retrieved by China’s Chang’e-6 mission from the South Pole–Aitken (SPA) Basin. This finding, published in Science Advances on November 14, provides direct sample-based evidence of highly oxidized materials on the lunar surface.

Redox reactions are a fundamental component of planetary formation and evolution. Nevertheless, scientific studies have shown that neither the oxygen fugacity of the lunar interior nor the environment favors oxidation. Consistent with this, multivalent iron on the moon primarily exists in its ferrous (Fe2+) and metallic (Fe0) states, suggesting an overall reduced state. However, with further lunar exploration, recent orbital remote sensing studies using visible-near-infrared spectroscopy have suggested the widespread presence of hematite in the moon’s high-latitude regions.

Furthermore, earlier research on Chang’e-5 samples first revealed impact-generated sub-micron magnetite (Fe3O4) and evidence of Fe3+ in impact glasses. These results indicate that localized oxidizing environments on the moon existed during lunar surface modification processes driven by external impacts.

/* */