Toggle light / dark theme

Astronomers using the James Webb Space Telescope have discovered the most distant quiescent galaxy ever seen – one that had already stopped forming stars just 700 million years after the Big Bang. This challenges existing models of galaxy evolution, which can’t explain how such massive, red and

New research suggests that Earth’s first crust, formed over 4.5 billion years ago, already carried the chemical traits we associate with modern continents. This means the telltale fingerprints of continental crust didn’t need plate tectonics to form, turning a long-standing theory on its head.

Using simulations of early Earth conditions, scientists found that the intense heat and molten environment of the planet’s infancy created these signatures naturally. The finding shakes up how we understand Earth’s evolution and could even influence how we think about crust formation on other planets.

A surprising shift in earth’s history.

In a recent study, researchers gained new insight into the lives of bacteria that survive by grouping together as if they were a multicellular organism. The organisms in the study are the only bacteria known to do this in this way, and studying them could help astrobiologists explain important steps in the evolution of life on Earth.

The work is published in the journal PLOS Biology.

The organisms in the study are known as multicellular magnetotactic bacteria (MMB). Being magnetotactic means that MMB are part of a select group of bacteria that orient their movement based on Earth’s magnetic field using tiny “compass needles” in their cells. As if that weren’t special enough, MMB also live bunched up in collections of cells that are considered by some scientists to exhibit “obligate” multicellularity, the trait on which the new study is focused.

Some stars in our galaxy pulse like musical instruments, and scientists have found a way to listen in. These rhythmic starquakes, like vibrations in a string or drum, reveal vital clues about a star’s age, composition, and life cycle.

By studying these “melodies” in a star cluster called M67—whose stars are like solar siblings—researchers uncovered a strange pause in stellar evolution called the “plateau.” This discovery helps pinpoint stellar ages with remarkable precision, bringing us closer to understanding how stars, and ultimately our galaxy, have evolved.

Celestial Music: Listening to Starquakes.

At the viral chatter stage of an outbreak, pathogens are just starting to infect people in sporadic bursts. It’s a sign that a pandemic may be on the horizon.

Millions of years before the asteroid impact that ended the reign of the dinosaurs, mammals were already beginning to shift from tree-dwelling to ground-based lifestyles.

A groundbreaking study uncovered this evolutionary trend by analyzing tiny limb bone fragments from marsupials and placental mammals in Western North America. These subtle fossil clues reveal that mammals may have been responding to a changing world, especially the spread of flowering plants that transformed habitats on the ground. Surprisingly, this terrestrial transition appears to have played a bigger role in mammalian evolution than direct interactions with dinosaurs.

Early Ground-Dwellers Before Dinosaurs’ Demise.

Humans like to think that being multicellular (and bigger) is a definite advantage, even though 80% of life on Earth consists of single-celled organisms—some thriving in conditions lethal to any beast.

In fact, why and how multicellular life evolved has long puzzled biologists. The first known instance of multicellularity was about 2.5 billion years ago, when marine cells (cyanobacteria) hooked up to form filamentous colonies. How this transition occurred and the benefits it accrued to the cells, though, is less than clear.

A study originating from the Marine Biological Laboratory (MBL) presents a striking example of cooperative organization among cells as a potential force in the evolution of multicellular life. Based on the fluid dynamics of cooperative feeding by Stentor, a relatively giant unicellular organism, the report is published in Nature Physics.