A newly discovered silicone variant is a semiconductor, University of Michigan researchers have discovered—upending assumptions that the material class is exclusively insulating.
“The material opens up the opportunity for new types of flat-panel displays, flexible photovoltaics, wearable sensors or even clothing that can display different patterns or images,” said Richard Laine, U-M professor of materials science and engineering and macromolecular science and engineering and corresponding author of the study recently published in Macromolecular Rapid Communications.
Silicone oils and rubbers—polysiloxanes and silsesquioxanes—are traditionally insulating materials, meaning they resist the flow of electricity or heat. Their water-resistant properties make them useful in biomedical devices, sealants, electronic coatings and more.
“By converting red visible light into something like green visible light, this technology could make the invisible visible for color blind people,” Xue said.
Despite these promising advances, more work is needed before the lenses see the light of day. Currently, they only pick up light projected from LED sources, which are incredibly bright, so the scientists will need to boost the lenses’ sensitivity to pick up light of lower intensities.
The lenses’ proximity to the retinas also may prevent them from detecting finer details, so the researchers have developed a wearable glass system for viewing objects at higher resolutions.
Neuroscientists and materials scientists have created contact lenses that enable infrared vision in both humans and mice by converting infrared light into visible light. Unlike infrared night vision goggles, the contact lenses, described in the journalCell, do not require a power source—and they enable the wearer to perceive multiple infrared wavelengths. Because they’re transparent, users can see both infrared and visible light simultaneously, though infrared vision was enhanced when participants had their eyes closed.
“Our research opens up the potential for noninvasive wearable devices to give people super-vision,” says senior author Tian Xue, a neuroscientist at the University of Science and Technology of China. “There are many potential applications right away for this material. For example, flickering infrared light could be used to transmit information in security, rescue, encryption or anti-counterfeiting settings.”
The contact lens technology uses nanoparticles that absorb infrared light and convert it into wavelengths that are visible to mammalian eyes (e.g., electromagnetic radiation in the 400–700 nm range). The nanoparticles specifically enable the detection of “near-infrared light,” which is infrared light in the 800‑1600 nm range, just beyond what humans can already see.
A novel thin-film material capable of simultaneously enhancing the efficiency and durability of tandem solar cells has been developed.
Led by Professor BongSoo Kim from the Department of Chemistry at UNIST, in collaboration with Professors Jin Young Kim and Dong Suk Kim from the Graduate School of Carbon Neutrality at UNIST, the team developed a multi-functional hole-selective layer (mHSL) designed to significantly improve the performance of perovskite/organic tandem solar cells (POTSCs). Their study is published in Advanced Energy Materials.
Tandem solar cells are advanced photovoltaic devices that stack two different types of cells to absorb a broader spectrum of sunlight, thereby increasing overall energy conversion efficiency. Among these, combinations of perovskite and organic materials are particularly promising for producing thin, flexible solar panels suitable for wearable devices and building-integrated photovoltaics, positioning them as next-generation energy sources.
Millions of years of evolution have enabled some marine animals to grow complex protective shells composed of multiple layers that work together to dissipate physical stress. In a new study, engineers have found a way to mimic the behavior of this type of layered material, such as seashell nacre, by programming individual layers of synthetic material to work collaboratively under stress. The new material design is poised to enhance energy-absorbing systems such as wearable bandages and car bumpers with multistage responses that adapt to collision severity.
Many past studies have focused on reverse engineering to replicate the behavior of natural materials like bone, feathers and wood to reproduce their nonlinear responses to mechanical stress. A new study, led by the University of Illinois Urbana-Champaign civil and environmental engineering professor Shelly Zhang and professor Ole Sigmund of the Technical University of Denmark, looked beyond reverse engineering to develop a framework for programmable multilayered materials capable of responding to local disturbances through microscale interconnections.
The study findings are published in the journal Science Advances.
Wearable technologies are revolutionizing health care, but design limitations in adhesive-based personal monitors have kept them from meeting their full potential.
A new University of Arizona study, published in Nature Communications, describes a longer-lasting, 3D-printed, adhesive-free wearable capable of providing a more comprehensive picture of a user’s physiological state.
The device, which measures water vapor and skin emissions of gases, continuously tracks and logs physiological data associated with dehydration, metabolic shifts and stress levels.
Inorganic semiconductors form the backbone of modern electronics due to their excellent physical properties, including high carrier mobility, thermal stability, and well-defined energy band structures, which enable precise control over electrical conductivity. Unfortunately, their intrinsic brittleness has traditionally required the use of costly, complex processing methods like deposition and sputtering—which apply inorganic materials to rigid substrates and limit their suitability for flexible or wearable electronics.
Now, however, a recent breakthrough by researchers from the Shanghai Institute of Ceramics of the Chinese Academy of Sciences and Shanghai Jiao Tong University in the warm processing of traditionally brittle semiconductors offers tremendous potential to expand applications for inorganic semiconductors into these fields.
In their study recently published in Nature Materials, the researchers report achieving plastic warm metalworking in a range of inorganic semiconductors traditionally considered too brittle for such processing. These findings open new avenues for efficient and cost-effective semiconductor manufacturing.
It’s easy to take joint mobility for granted. Without thinking, it’s simple enough to turn the pages of a book or bend to stretch out a sore muscle. Designers don’t have the same luxury. When building a joint, be it for a robot or wrist brace, designers seek customizability across all degrees of freedom but are often restricted by their versatility to adapt to different use contexts.
Researchers at Carnegie Mellon University’s College of Engineering have developed an algorithm to design metastructures that are reconfigurable across six degrees of freedom and allow for stiffness tunability. The algorithm can interpret the kinematic motions that are needed for multiple configurations of a device and assist designers in creating such reconfigurability. This advancement gives designers more precise control over the functionality of joints for various applications.
The team demonstrated the structure’s versatile capabilities via multiple wearable devices tailored for unique movement functions, body areas, and uses.