Toggle light / dark theme

Dark Matter: A Parallel Universe? New Breakthrough Explained! | WION Podcast

A groundbreaking new study suggests that dark matter, one of the universe’s biggest mysteries, could be the result of a parallel universe. Researchers argue that the unseen, gravitationally interacting matter might be the interaction between our universe and another, previously undetected one. The study explores how this hypothesis could explain the effects of dark matter that have been observed in galaxies and cosmic structures. The idea challenges the current understanding of physics and opens new avenues for research into the nature of reality. This revelation could transform our approach to cosmology, potentially leading to a deeper understanding of the universe and its fundamental forces. The implications of such a discovery could revolutionize how we perceive space, time, and matter.

#science #space #wionpodcast.

About Channel:

WION The World is One News examines global issues with in-depth analysis. We provide much more than the news of the day. Our aim is to empower people to explore their world. With our Global headquarters in New Delhi, we bring you news on the hour, by the hour. We deliver information that is not biased. We are journalists who are neutral to the core and non-partisan when it comes to world politics. People are tired of biased reportage and we stand for a globalized united world. So for us, the World is truly One.

Please keep discussions on this channel clean and respectful and refrain from using racist or sexist slurs and personal insults.

Check out our website: http://www.wionews.com.

Gaia’s variable stars: A new map of the stellar life cycle

One of the best places to study stars is inside “open clusters,” which are groups of stars that formed together from the same material and are bound together through gravity.

Open clusters act as laboratories, showing how stars of different masses and ages behave. At the same time, some stars, known as “variable stars,” regularly change in brightness, and their flickers and pulses help scientists learn about the physics inside stars and about the wider galaxy.

Until now, astronomers studied clusters and variable stars separately, and usually one cluster at a time. But that approach missed the bigger picture, leaving gaps in our understanding of how the lives of stars unfold across the galaxy.

Finding clarity in the noise: New approach recovers hidden signals at the nanoscale

In the world of nanotechnology, seeing clearly isn’t easy. It’s even harder when you’re trying to understand how a material’s properties relate to its structure at the nanoscale. Tools like piezoresponse force microscopy (PFM) help scientists peer into the nanoscale functionality of materials, revealing how they respond to electric fields. But those signals are often buried in noise, especially in instances where the most interesting physics happens.

Now, researchers at Georgia Tech have developed a powerful new method to extract meaningful information from even the noisiest data, or when, alternatively, the response of the material is the smallest. Their approach, which combines physical modeling with advanced statistical reconstruction, could significantly improve the accuracy and confidence of nanoscale measurement properties.

The team’s findings, led by Nazanin Bassiri-Gharb, Harris Saunders, Jr. Chair and Professor in the George W. Woodruff School of Mechanical Engineering and School of Materials Science and Engineering (MSE), are reported in Small Methods.

Scientists use Stephen Hawking theory to propose ‘black hole morsels’ — strange, compact objects that could reveal new physics

Violent black hole collisions may create black hole ‘morsels’ no larger than an asteroid — and these bizarre objects could pave the way to unlocking new physics, a study claims.

Study reveals mechanisms of rapidly driven plasma magnetic reconnection

A research team from the Yunnan Observatories of the Chinese Academy of Sciences has shed new light on the magnetic reconnection process driven by rapidly expanding plasma, using magnetohydrodynamic (MHD) numerical simulations. Their findings, published recently in Science China Physics, Mechanics & Astronomy, reveal previously unobserved fine structures and physical mechanisms underlying this fundamental phenomenon.

Magnetic reconnection—a process where break and rejoin, releasing massive energy—is critical to understanding explosive events in plasmas, from laboratory experiments to and space weather.

The team focused on how this process unfolds under rapid driving conditions, examining three distinct reconnection modes: flux pile-up, Sonnerup, and hybrid. These modes, they found, arise from variations in gas pressure and within the inflow region, where plasma is drawn into the reconnection site.

Gold Survives 33,740°F, Overturning a 40-Year Physics Theory

Scientists have made the first-ever direct measurement of atomic temperatures in extreme materials, shattering a four-decade-old theory about how far solids can be superheated.

Using a powerful laser and ultrabright X-rays, researchers at SLAC and collaborating institutions heated gold to an astonishing 19,000 K, more than 14 times its melting point, while it remained solid. This breakthrough not only redefines the limits of matter under extreme conditions but also opens the door to new insights into planetary interiors, fusion energy research, and high-energy density physics.

Measuring the unmeasurable: cracking the heat code.

/* */