Toggle light / dark theme

From Big Bang To AI, Unified Dynamics Enables Understanding Of Complex Systems

Experiments reveal that inflation not only smooths the universe but populates it with a specific distribution of initial perturbations, creating a foundation for structure formation. The team measured how quantum fluctuations during inflation are stretched and amplified, transitioning from quantum to classical behavior through a process of decoherence and coarse-graining. This process yields an emergent classical stochastic process, captured by Langevin or Fokker-Planck equations, demonstrating how classical stochastic dynamics can emerge from underlying quantum dynamics. The research highlights that the “initial conditions” for galaxy formation are not arbitrary, but constrained by the Gaussian field generated during inflation, possessing specific correlations. This framework provides a cross-scale narrative, linking microphysics and cosmology to life, brains, culture, and ultimately, artificial intelligence, demonstrating a continuous evolution of dynamics across the universe.

Universe’s Evolution, From Cosmos to Cognition

This research presents a unified, cross-scale narrative of the universe’s evolution, framing cosmology, astrophysics, biology, and artificial intelligence as successive regimes of dynamical systems. Rather than viewing these fields as separate, the work demonstrates how each builds upon the previous, connected by phase transitions, symmetry-breaking events, and attractors, ultimately tracing a continuous chain from the Big Bang to contemporary learning systems. The team illustrates how gravitational instability shapes the cosmic web, leading to star and planet formation, and how geochemical cycles establish stable, long-lived attractors, providing the foundation for life’s emergence as self-maintaining reaction networks. The study emphasizes that the universe is not simply evolving in state, but also in its capacity for description and learning, with each transition.

Where’s my qubit? Scientists develop technique to detect atom loss

Quiet quitting isn’t just for burned out employees. Atoms carrying information inside quantum computers, known as qubits, sometimes vanish silently from their posts. This problematic phenomenon, called atom loss, corrupts data and spoils calculations.

But Sandia National Laboratories and the University of New Mexico have for the first time demonstrated a practical way to detect these “leakage errors” for neutral atom platforms. This achievement removes a major roadblock for one branch of quantum computing, bringing scientists closer to realizing the technology’s full potential. Many experts believe quantum computers will help reveal truths about the universe that are impossible to glean with current technology.

“We can now detect the loss of an atom without disturbing its ,” said Yuan-Yu Jau, Sandia atomic physicist and principal investigator of the experiment team.

We Will Never Have Enough Resources For Teleportation | The Real Science of Scifi

Join the nerd club: patreon.com/c/u83887531/membership.

Star Trek brought us so much scifi tech that we have been waiting to see come to life and one of the biggest dreams of all is teleportation! To boldly go… to the other side of the world without an 18 hour flight!

This is the second episode in a series about Scifi Tech we’ll never have…soz!
Today we’ll talk about matter vs information, how quantum teleportation actually works, how much information a human body contains, how we would measure that information and transfer it and ultimately, that it all comes down to an identity crisis.

Chapters:
00:00 Introduction.
02:32 For the love of scifi.
07:20 Quantum information.
11:46 Quantum teleportation.
16:19 The human factor.
20:20 Heisenberg compensators.
22:13 The measurement destruction problem.
24:15 The timing problem.
25:53 The data problem.
30:58 The unavoidable energy cost.
33:11 The identity question.

Let me know what topic you’d like next! And if you want more then join the nerd club on Patreon or sign up for a youtube membership.

Subscribe for more science in your favourite sci-fi.

Things to read — papers are all open access versions:

Surprise: Free Will Needs Quantum Physics to Fail, Physicists Show

Check out the interactive lessons on Brilliant! Start learning for free at https://brilliant.org/sabine/ and get 20% off a premium subscription, which includes daily unlimited access!

Some physicists believe that human consciousness is somehow linked to the indeterministic element of quantum physics. But according to a surprising new argument that just appeared on the arXiv, a world where everything is ruled by quantum physics is incompatible with the idea of free will. Let’s take a look.

Paper: https://arxiv.org/abs/2510.

👕T-shirts, mugs, posters and more: ➜ https://sabines-store.dashery.com/
💌 Support me on Donorbox ➜ https://donorbox.org/swtg.
👉 Transcript with links to references on Patreon ➜ / sabine.
📝 Transcripts and written news on Substack ➜ https://sciencewtg.substack.com/
📩 Free weekly science newsletter ➜ https://sabinehossenfelder.com/newsle… Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl… 🔗 Join this channel to get access to perks ➜ / @sabinehossenfelder 📚 Buy my book ➜ https://amzn.to/3HSAWJW #sciencenews #science #physics #philosophy.
👂 Audio only podcast ➜ https://open.spotify.com/show/0MkNfXl
🔗 Join this channel to get access to perks ➜
/ @sabinehossenfelder.
📚 Buy my book ➜ https://amzn.to/3HSAWJW

#sciencenews #science #physics #philosophy

Low-threshold lasing from colloidal quantum dots under quasi-continuous-wave excitation

Researchers demonstrate quantum dot lasing using excitation by an electrically modulated (0.1–1% duty cycle), low-power continuous-wave laser diode, achieving lasing at a pump intensity just above 500 W cm−2 at 77 K and 3.6 kW cm−2 at room temperature.

Why quantum computers have memory problems over time

A team of Australian and international scientists has, for the first time, created a full picture of how errors unfold over time inside a quantum computer—a breakthrough that could help make future quantum machines far more reliable.

The researchers, led by Macquarie University’s Dr. Christina Giarmatzi, found that the tiny errors that plague quantum computers don’t just appear randomly. Instead, they can linger, evolve and even link together across different moments in time.

The team has made its experimental data and code openly available, and the full study is published in Quantum.

Einstein in a Chip: Hidden Geometry Bends Electrons Like Gravity

A team at UNIGE has uncovered a geometric structure once thought to be purely theoretical at the core of quantum materials, opening the door to major advances in future electronics. How can information be processed almost instantly, or electrical current flow without energy loss? To reach these g

/* */