Quantum mechanics is rich with paradoxes and contradictions. It describes a microscopic world in which particles exist in a superposition of states—being in multiple places and configurations all at once, defined mathematically by what physicists call a “wavefunction.” But this runs counter to our everyday experience of objects that are either here or there, never both at the same time.
Typically, physicists manage this conflict by arguing that, when a quantum system comes into contact with a measuring device or an experimental observer, the system’s wavefunction “collapses” into a single, definite state. Now, with support from the Foundational Questions Institute, FQxI, an international team of physicists has shown that a family of unconventional solutions to this measurement problem—called “quantum collapse models”—has far-reaching implications for the nature of time and for clock precision.
They published their results suggesting a new way to distinguish these rival models from standard quantum theory, in Physical Review Research, in November 2025.









