Toggle light / dark theme

Scientists manage to read information stored in Majorana qubits

Researchers have managed to read information stored in Majorana qubits, which are a form of topological qubit.

Researchers from Spanish National Research Council demonstrated that they can access the information stored in Majorana qubits using a new technique called quantum capacitance.

“This is a crucial advance,” explained Ramón Aguado, a CSIC researcher at the Madrid Institute of Materials Science (ICMM) and one of the study’s authors.

Quantum States Stay Frozen in First Experimental Test of Statistical Localization

PRESS RELEASE — In the everyday world, governed by classical physics, the concept of equilibrium reigns. If you put a drop of ink into water, it will eventually evenly mix. If you put a glass of ice water on the kitchen table, it will eventually melt and become room temperature.

That concept rooted in energy transport is known as thermalization, and it is easy to comprehend because we see it happen every day. But this is not always how things behave at the smallest scales of the universe.

In the quantum realm—at the atomic and sub-atomic scales—there can be a phenomenon called localization, in which equilibrium spreading does not occur, even with nothing obviously preventing it. Researchers at Duke University have observed this intriguing behavior using a quantum simulator for the first time. Also known as statistical localization, the research could help probe questions about unusual material properties or quantum memory.

The Truth About Merging With AI

Will humans one day merge with artificial intelligence? Futurist Ray Kurzweil predicts a coming “singularity” where humans upload their minds into digital systems, expanding intelligence and potentially achieving immortality. But critics argue that consciousness, creativity, love, and spiritual awareness cannot be reduced to algorithms. This discussion explores brain-computer interfaces, quantum mechanics and the mind, the Ship of Theseus identity paradox, and whether a digital copy of your brain would actually be you. Is AI-driven immortality possible—or does it misunderstand what it means to be human?

Every year the Center sponsors COSM an exclusive national summit on the converging technologies remaking the world as we know it. Visit COSM.TECH (https://cosm.tech/) for information on COSM 2025, November 19–21 at the beautiful Hilton Scottsdale Resort and Spas in Scottsdale, AZ. For more information. Registration will launch mid-July.

The mission of the Walter Bradley Center for Natural and Artificial Intelligence at Discovery Institute is to explore the benefits as well as the challenges raised by artificial intelligence (AI) in light of the enduring truth of human exceptionalism. People know at a fundamental level that they are not machines. But faulty thinking can cause people to assent to views that in their heart of hearts they know to be untrue. The Bradley Center seeks to help individuals—and our society at large—to realize that we are not machines while at the same time helping to put machines (especially computers and AI) in proper perspective.

Be sure to subscribe to the Center for Natural and Artificial Intelligence.
on Youtube: / @discoverycnai.

Follow Walter Bradley Center for Natural and Artificial Intelligence on.
X: / cnaintelligence, @cnaintelligence.
Facebook: / bradleycenterdi.

Visit other Youtube channels connected to the Discovery Institute:

Machine learning helps solve a central problem of quantum chemistry

Within the STRUCTURES Cluster of Excellence, two research teams at the Interdisciplinary Center for Scientific Computing (IWR) have refined a computing process, long held to be unreliable, such that it delivers precise results and reliably establishes a physically meaningful solution. The findings are published in the Journal of the American Chemical Society.

Why molecular electron densities matter

How electrons are distributed in a molecule determines its chemical properties—from its stability and reactivity to its biological effect. Reliably calculating this electron distribution and the resulting energy is one of the central functions of quantum chemistry. These calculations form the basis of many applications in which molecules must be specifically understood and designed, such as for new drugs, better batteries, materials for energy conversion, or more efficient catalysts.

The Genius of Computing with Light

Check out shortform and get a FREE trial and $50 OFF the annual plan! at https://www.shortform.com/DrBen.

PsiQuantum are world leaders in the race to utility-scale quantum computing, but they have been shrouded in mystery for over a decade…until now.

Thanks to some good fortune and incredible generosity from the PsiQuantum team I was able to get behind the scenes and see what makes their ground-breaking quantum computer ‘click’

You can see their public paper here: https://www.nature.com/articles/s41586-025-08820-7

0:00 Silicon Valley’s Most Secretive Quantum Computer.
1:38 A Quantum Computer that runs on Light.
6:03 How to Create a Single Photon.
9:00 How to Build a Quantum Clock.
10:48 Ad Read.
11:54 Detecting Single Photons.
15:00 Creating the Perfect Material.
18:19 How to do math with light.
21:45 How to Build a Scalable Quantum Computer.
24:27 Converting Space to Time.
27:25 The First Photonic Quantum Computer Demonstrator.

PATREON:👨‍🔬 🚀 http://patreon.com/DrBenMiles.

Measuring chaos: Researchers quantify the quantum butterfly effect

For the first time, researchers in China have accurately quantified how chaos increases in a quantum many-body system as it evolves over time. Combining experiments and theory, a team led by Yu-Chen Li at the University of Science and Technology of China showed that the level of chaos grows exponentially when time reversal is applied to these systems—matching predictions of their extreme sensitivity to errors. The research has been published in Physical Review Letters.

The butterfly effect is a well-known expression of chaos theory. It describes how a complex system can quickly become unpredictable as it evolves: make just a few small errors when specifying the system’s starting conditions, and it may look completely different from your calculations a short time later.

This effect is especially relevant in many-body quantum systems, where entanglement creates intricate webs of interconnection between particles—even in relatively small systems. As the system evolves, information about its initial state becomes increasingly dispersed across these connections.

Record-breaking photons at telecom wavelengths

A team of researchers from the University of Stuttgart and the Julius-Maximilians-Universität Würzburg led by Prof. Stefanie Barz (University of Stuttgart) has demonstrated a source of single photons that combines on-demand operation with record-high photon quality in the telecommunications C-band—a key step toward scalable photonic quantum computation and quantum communication. “The lack of a high-quality on-demand C-band photon source has been a major problem in quantum optics laboratories for over a decade—our new technology now removes this obstacle,” says Prof. Stefanie Barz.

The key: Identical photons on demand In everyday life, distinguishing features may often be desirable. Few want to be exactly like everyone else. When it comes to quantum technologies, however, complete indistinguishability is the name of the game. Quantum particles such as photons that are identical in all their properties can interfere with each other—much as in noise-canceling headphones, where sound waves that are precisely inverted copies of the incoming noise cancel out the background.

When identical photons are made to act in synchrony, then the probability that certain measurement outcomes occur can be either boosted or decreased. Such quantum effects give rise to powerful new phenomena that lie at the heart of emerging technologies such as quantum computing and quantum networking. For these technologies to become feasible, high-quality interference between photons is essential.

BREAKTHROUGH: How Consciousness Creates the Simulation | Dr. Donald Hoffman

Cognitive Scientist, Dr. Donald Hoffman returns to the mind meld!
Are we, as Plato argued thousands of years ago, mistaking shadows on a cave wall for reality?

In this conversation with the brilliant Dr. Donald Hoffman, we question whether space-time and the world we experience with our senses is fundamental or merely a shallow projection of something deeper. Drawing on Plato’s cave, physics, cognitive science, mystical traditions, quantum theory, and Hoffman’s own framework of conscious agents, we explore the possibility that reality emerges from consciousness rather than the other way around. Don also shares what could be a mind blowing breakthrough in his theory.
What is reality? Will science ever find a final theory of everything? Are we locked inside a simulation designed for survival, not truth? If consciousness transcends space-time, what does that imply about our potential, our perception, our purpose and our fate as beings? We riff on all of this and more in this mind meld.

Links for Donald Hoffman:
New to Don’s work? Start with this TED Talk: https://youtu.be/oYp5XuGYqqY?si=dJJzY05c1koiTYb4
Don’s book, The Case Against Reality: https://a.co/d/0aGapviw.
Don’s UC Irvine page: https://sites.socsci.uci.edu/~ddhoff/

Links For Third Eye Drops 🌀
🥰 Support TED and join the community on Patreon:
https://www.patreon.com/thirdeyedrops.
Get access to our Youtube Member’s Library:
https://www.youtube.com/@THIRDEYEDROPS/membership.
Hear hundreds of other mind melds:
🎧 Apple Podcasts:
thirdeyedrops.com/itunes.
🎧 Spotify:
https://shorturl.at/ahnB1
🌀 Website.
https://www.thirdeyedrops.com.
✌️Follow Michael on Instagram.
https://instagram.com/third_eye_drops

Why Cybersecurity Strategies and Frameworks Must Be Recalibrated in the Age of AI and Quantum Threats

#cybersecurity #ai #quantum


Artificial intelligence and quantum computing are no longer hypothetical; they are actively altering cybersecurity, extending attack surfaces, escalating dangers, and eroding existing defenses. We are in a new ear of emerging technologies that are directly impacting cybersecurity requirements.

As a seasoned observer and participant in the cybersecurity domain—through my work, teaching, and contributions to Homeland Security Today, my book “Inside Cyber: How AI, 5G, IoT, and Quantum Computing Will Transform Privacy and Our Security”, — I have consistently underscored that technological advancement is outpacing our institutions, policies, and workforce preparedness.

Current frameworks, intended for a pre-digital convergence era, are increasingly unsuitable. In order to deal with these dual-use technologies that act as force multipliers for both defenders and enemies, we must immediately adjust our strategy as time is of the essence.

/* */