Toggle light / dark theme

HD⁺ ions cooled to 18 mK yield most precise vibrational-rotational spectra to date

A research team from the Innovation Academy for Precision Measurement Science and Technology (APM) of the Chinese Academy of Sciences has made significant progress in precisely measuring the vibrational-rotational spectra of hydrogen molecular ions (HD⁺).

The researchers prepared a Be⁺-HD⁺ two-component ion Coulomb crystal at millikelvin temperatures in a linear ion trap. They developed an innovative quantum state preparation and spatially resolved fluorescence detection techniques and used these to measure the high-resolution vibrational-rotational transition spectra of HD⁺ molecular ions. Their findings were published in Physical Review A.

HD⁺ is the simplest heteronuclear molecular ion, composed of one proton, one deuteron, and one electron. Its vibrational-rotational transition energies can be precisely calculated, making it an ideal system for testing quantum electrodynamics (QED) theory and determining , such as the proton-electron mass ratio.

Scientists to Use Earth Itself as a Giant Sensor in Hunt for New Physics

Far above Earth, scientists are using quantum sensors to listen for the faintest whispers of unseen forces that may weave through the universe. Scientists are constantly searching for new clues about the hidden forces that may exist beyond the known laws of physics. One promising area of research

IBM unveils two new quantum processors — including one that offers a blueprint for fault-tolerant quantum computing by 2029

IBM has released two new complex quantum processors alongside a new framework that would allow us to track the first demonstration of quantum advantage.

Superconducting qubit that lasts for over 1 millisecond is primed for industrial scaling

In a major step toward practical quantum computers, Princeton engineers have built a superconducting qubit that lasts three times longer than today’s best versions.

“The real challenge, the thing that stops us from having useful quantum computers today, is that you build a qubit and the information just doesn’t last very long,” said Andrew Houck, Princeton’s dean of engineering and co-principal investigator. “This is the next big jump forward.”

In an article in the journal Nature, the Princeton team report that their new qubit lasts for over 1 millisecond. This is three times longer than the best ever reported in a lab setting, and nearly 15 times longer than the industry standard for large-scale processors.

Nobel Winners Just Proved the Universe Is Quantum — 2025 Physics Prize Explained

#EverythingSpace #Universe.

Nobel Winners Just Proved the Universe Is Quantum — 2025 Physics Prize Explained.

In this episode of Everything Space, we break down the groundbreaking discoveries that earned this year’s Nobel Prize, and what they mean for the way we understand reality itself. From experiments that challenge Einstein’s idea of locality, to the mysterious phenomenon of quantum entanglement, these results show that the universe behaves in ways once thought impossible.

We’ll explore how scientists finally confirmed that particles can influence each other across vast distances — instantaneously — and why this discovery reshapes our understanding of space, time, and the very nature of existence.

Join us as we unravel the science behind the Nobel-winning breakthrough that proves the universe isn’t just strange — it’s quantum.

#QuantumUniverse #Physics2025 #NobelPrize #EverythingSpace #SpaceMysteries.

First Ever Programmable DNA Circuit Is a Breakthrough In Biocomputing

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3wDGy2i.
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about an invention of a DNA bio computer.
Links:
https://www.nature.com/articles/s41586-023-06484-9
https://www.washington.edu/news/2016/04/07/uw-team-stores-di…perfectly/
Other videos:
https://youtu.be/x3jiY8rZAZs.
https://youtu.be/JGWbVENukKc.

#dna #biocomputer #genetics.

0:00 Quantum computer hype.
0:50 Biocomputers?
1:55 Original DNA computers from decades ago.
3:10 Problems with this idea.
3:50 New advances.
5:35 First breakthrough — DNA circuit.
7:30 Huge potential…maybe.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.

Physicists unveil system to solve long-standing barrier to new generation of supercomputers

The dream of creating game-changing quantum computers—supermachines that encode information in single atoms rather than conventional bits—has been hampered by the formidable challenge known as quantum error correction.

In a paper published Monday in Nature, Harvard researchers demonstrated a new system capable of detecting and removing errors below a key performance threshold, potentially providing a workable solution to the problem.

“For the first time, we combined all essential elements for a scalable, error-corrected quantum computation in an integrated architecture,” said Mikhail Lukin, co-director of the Quantum Science and Engineering Initiative, Joshua and Beth Friedman University Professor, and senior author of the new paper. “These experiments—by several measures the most advanced that have been done on any quantum platform to date—create the scientific foundation for practical large-scale quantum computation.”

How sound and light act alike—and not—at the smallest scale

A world-famous light experiment from 1801 has now been carried out with sound for the first time. Research by physicists in Leiden has produced new insights that could be applied in 5G devices and the emerging field of quantum acoustics. The study is published in the journal Optics Letters.

Ph.D. student Thomas Steenbergen says, “We saw that in materials behave in the same way as light, but also slightly differently. With a mathematical model, we can now explain and predict this behavior.”

A new ion-based quantum computer makes error correction simpler

Still, it’s not clear what type of qubit will win in the long run. Each type has design benefits that could ultimately make it easier to scale. Ions (which are used by the US-based startup IonQ as well as Quantinuum) offer an advantage because they produce relatively few errors, says Islam: “Even with fewer physical qubits, you can do more.” However, it’s easier to manufacture superconducting qubits. And qubits made of neutral atoms, such as the quantum computers built by the Boston-based startup QuEra, are “easier to trap” than ions, he says.

Besides increasing the number of qubits on its chip, another notable achievement for Quantinuum is that it demonstrated error correction “on the fly,” says David Hayes, the company’s director of computational theory and design, That’s a new capability for its machines. Nvidia GPUs were used to identify errors in the qubits in parallel. Hayes thinks that GPUs are more effective for error correction than chips known as FPGAs, also used in the industry.

Quantinuum has used its computers to investigate the basic physics of magnetism and superconductivity. Earlier this year, it reported simulating a magnet on H2, Helios’s predecessor, with the claim that it “rivals the best classical approaches in expanding our understanding of magnetism.” Along with announcing the introduction of Helios, the company has used the machine to simulate the behavior of electrons in a high-temperature superconductor.

/* */