Menu

Blog

Latest posts

Oct 16, 2024

CERN Just Found Ultra-Rare Particle, Which Is Creating New Physics

Posted by in categories: mathematics, particle physics

In a particle collider at CERN, a rarely-seen event is bringing us tantalizingly close to the brink of new physics.

From years of running what is known as the NA62 experiment, particle physicist Cristina Lazzeroni of the University of Birmingham in the UK and her colleagues have now established, experimentally observed, and measured the decay of a charged kaon particle into a charged pion and a neutrino-antineutrino pair. The researchers have presented their findings at a CERN seminar.

It’s exciting stuff. The reason the team has been pursuing this very specific kind of decay channel so relentlessly for more than a decade is because it’s what is known as a “golden” channel, meaning not only is it incredibly rare, but also well predicted by the complex mathematics making up the Standard Model of physics.

Oct 16, 2024

New global database of dams and reservoirs could transform water management

Posted by in category: futurism

A database developed by the Global Dam Watch (GDW) consortium is set to transform the global understanding of dams and reservoirs.

Oct 16, 2024

Multicolor persistent luminescent materials for dynamic optical anti-counterfeiting

Posted by in category: materials

Optical anti-counterfeiting technology, as a preventive measure, has deeply permeated our daily lives. Visually readable codes designed based on optical materials are widely used due to their ease of verification, reasonable cost, and difficulty in replication. The rapid development of modern technology and the increasingly rampant activities of counterfeiting pose greater challenges to optical anti-counterfeiting technology. Consequently, optical anti-counterfeiting material systems based on multimodal integrated applications have garnered widespread attention.

Oct 16, 2024

Enhanced wavelength conversion paves the way for more efficient quantum information transfer

Posted by in category: quantum physics

Advancements in quantum information technology are paving the way for faster and more efficient data transfer. A key challenge has been ensuring that qubits, the fundamental units of quantum information, can be transferred between different wavelengths without losing their essential properties, such as coherence and entanglement.

Oct 16, 2024

Janus-like metasurface technology shows different optical responses according to the direction of light

Posted by in categories: innovation, security

Metasurface technology is an advanced optical technology that is thinner, lighter, and more capable of precisely controlling light through nanometer-sized artificial structures than conventional technologies. KAIST researchers have overcome the limitations of existing metasurface technologies and successfully designed a Janus metasurface capable of perfectly controlling asymmetric light transmission. By applying this technology, they have also proposed an innovative method to significantly enhance security by only decoding information under specific conditions.

Oct 16, 2024

In a fusion device plasma, a steep ion temperature gradient slows the growth of magnetic islands

Posted by in categories: futurism, nuclear energy

Future fusion power plants will require good plasma confinement to sustain reactions and generate energy. One way to contain plasma for fusion reactions is to use a tokamak, a device that applies magnetic fields to “bottle” plasma. However, magnetic islands, a type of instability in the plasma, can destroy the confining magnetic field if they grow large enough.

Oct 16, 2024

Researchers unveil pressure-tuned superconductivity in natural bulk heterostructure 6R-TaS₂

Posted by in category: evolution

By combining comprehensive high-pressure measurements and first-principles calculations, a research group has discovered the pressure-induced unusual evolution of superconductivity (SC) and exotic interplay between SC and charge-density-wave (CDW) order in a natural bulk van der Waals heterostructure.

Oct 16, 2024

Spin-wave reservoir chips can enhance edge computing

Posted by in categories: materials, robotics/AI

Reservoir computing (RC) has a few benefits over other artificial neural networks, including the reservoir that gives this technique its name. The reservoir functions mainly to nonlinearly transform input data more quickly and efficiently. Spin waves, propagating wave-like disturbances arising from magnetic interactions, can traverse through a material. These excitations are driven by the spin of electrons.

Oct 16, 2024

New light-induced material shows powerful potential for quantum applications

Posted by in categories: particle physics, quantum physics, solar power, sustainability

Many scientists are studying different materials for their potential use in quantum technology. One important feature of the atoms in these materials is called spin. Scientists want to control atomic spins to develop new types of materials, known as spintronics. They could be used in advanced technologies like memory devices and quantum sensors for ultraprecise measurements.

In a recent breakthrough, researchers at the U.S. Department of Energy’s (DOE) Argonne National Laboratory and Northern Illinois University discovered that they could use light to detect the in a class of materials called perovskites (specifically in this research methylammonium lead iodide, or MAPbI3). Perovskites have many potential uses, from solar panels to quantum technology.

The work is published in the journal Nature Communications.

Oct 16, 2024

Brain delays could be a computational advantage, researchers say

Posted by in categories: biological, computing, neuroscience

Biological components are less reliable than electrical ones, and rather than instantaneously receive the incoming signals, the signals arrive with a variety of delays. This forces the brain to cope with said delays by having each neuron integrate the incoming signals over time and fire afterwards, as well as using a population of neurons, instead of one, to overcome neuronal cells that temporarily don’t fire.

Page 1 of 11,85312345678Last