Go to https://ground.news/pete to stay fully informed. Subscribe through my link to get 40% off unlimited access this month only.
Update: My mistake in the video, Elsevier and the list of other orgs I mentioned are \.
Go to https://ground.news/pete to stay fully informed. Subscribe through my link to get 40% off unlimited access this month only.
Update: My mistake in the video, Elsevier and the list of other orgs I mentioned are \.
The concept of traveling beyond the speed of light has been given theoretical grounding through the Alcubierre warp drive. Proposed by physicist Miguel Alcubierre in the 1990s, this warp drive involves creating a space-time bubble around a spacecraft. By contracting space in front of the spacecraft and expanding it behind, the ship can ride a wave of space-time, seemingly achieving faster-than-light travel without breaking the cosmic speed limit. In essence, it’s the space around the ship that moves, not the ship itself, allowing for rapid traversal of vast distances.
The theoretical feasibility of the Alcubierre warp drive hinges on generating an immense amount of energy, currently beyond our technological capabilities. The ship’s warp core, similar to a nuclear reactor, would utilize matter and antimatter collisions to produce the necessary energy for warping space. While this concept was initially fictional, Alcubierre proposed a solution to Einstein’s Field Equation that aligned with the principles of the Star Trek Warp Drive.
Continue reading “How Can Warp Drive Travel Faster Than Light? Alcubierre Warp Drive Explained” »
With their ability to generate human-like language and complete a variety of tasks, generative AI has the potential to revolutionise the way we communicate, learn and work. But what other doors will this technology open for us, and how can we harness it to make great leaps in technology innovation? Have we finally done it? Have we cracked AI?
Join Professor Michael Wooldridge for a fascinating discussion on the possibilities and challenges of generative AI models, and their potential impact on societies of the future.
Continue reading “The Turing Lectures: The future of generative AI” »
Consciousness is comprised of arousal (i.e., wakefulness) and awareness. Substantial progress has been made in mapping the cortical networks that modulate awareness in the human brain, but knowledge about the subcortical networks that sustain arousal is lacking. We integrated data from ex vivo diffusion MRI, immunohistochemistry, and in vivo 7 Tesla functional MRI to map the connectivity of a subcortical arousal network that we postulate sustains wakefulness in the resting, conscious human brain, analogous to the cortical default mode network (DMN) that is believed to sustain self-awareness. We identified nodes of the proposed default ascending arousal network (dAAN) in the brainstem, hypothalamus, thalamus, and basal forebrain by correlating ex vivo diffusion MRI with immunohistochemistry in three human brain specimens from neurologically normal individuals scanned at 600–750 µm resolution. We performed deterministic and probabilistic tractography analyses of the diffusion MRI data to map dAAN intra-network connections and dAAN-DMN internetwork connections. Using a newly developed network-based autopsy of the human brain that integrates ex vivo MRI and histopathology, we identified projection, association, and commissural pathways linking dAAN nodes with one another and with cortical DMN nodes, providing a structural architecture for the integration of arousal and awareness in human consciousness. We release the ex vivo diffusion MRI data, corresponding immunohistochemistry data, network-based autopsy methods, and a new brainstem dAAN atlas to support efforts to map the connectivity of human consciousness.
One sentence summary We performed ex vivo diffusion MRI, immunohistochemistry, and in vivo 7 Tesla functional MRI to map brainstem connections that sustain wakefulness in human consciousness.
BF has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. BF’s interests were reviewed and are managed by Massachusetts General Hospital and Mass General Brigham HealthCare in accordance with their conflict-of-interest policies.
Is consciousness a scientific problem to be solved? Or a philosophical problem that will remain a mystery? What do scientists who study the brain think? And why do they think the way they do? These leading brain scientists share their intimate ideas about how the brain generates consciousness.
Free access to Closer to Truth’s library of 5,000 videos: http://bit.ly/376lkKN
Continue reading “How Brain Scientists Think About Consciousness” »
🧠 Dive into the fascinating world of the human brain with our latest video, ‘Unlocking the…
Learn more about the Cognitive Science Student Association and the California Cognitive Science Conference at https://cssa.berkeley.edu.
Amy Arnsten — Yale University.
Continue reading “The Effects of Stress on Prefrontal Cortical Function” »
We were privileged to host the extraordinary Dr. Michael Levin, an eminent scientist and esteemed developmental and synthetic biologist, for a truly exceptional event titled \.
What Matters to Me and Why is a series of virtual presentations followed by discussion that goes beyond the great research we’ve heard about: To give our community a chance to get to know how our faculty came to their topics and—in their own words—what inspires and is important to them!
An international team of researchers of the Cluster of Excellence “Balance of the Microverse” at the University of Jena has investigated the mechanism that makes some types of bacteria reflect light without using pigments. The researchers were interested in the genes responsible and discovered important ecological connections. Their findings appear in the Proceedings of the National Academy of Sciences.
The iridescent colors known from peacock feathers or butterfly wings are created by tiny structures that reflect light in a special way. Some bacterial colonies form similar glittering structures.
In collaboration with the Max Planck Institute of Colloids and Interfaces, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Utrecht University, University of Cambridge, and the Netherlands Institute for Sea Research, the scientists sequenced the DNA of 87 structurally colored bacteria and 30 colorless strains and identified genes that are responsible for these fascinating colonies. These findings could lead to the development of environmentally-friendly dyes and materials, a key interest of the collaborating biotechnology company Hoekmine BV.