An advance from Monash University could pave the way for faster, smaller, and more energy-efficient lasers and other light-based technologies. Engineers have developed a new type of perovskite material arranged into an ordered “supercrystal.” In this structure, tiny packets of energy called excitons work together rather than individually, allowing the material to amplify light far more efficiently. The findings, published in Laser & Photonics Reviews, could have applications in communications, sensors, and computing, improving the performance of devices that rely on light, such as sensors in autonomous vehicles, medical imaging, or electronics.
Corresponding author Professor Jacek Jasieniak at Monash Materials Science and Engineering highlighted the potential for faster, more energy-efficient optical devices. “What’s exciting here is that we’re not changing the material itself, but how it’s organized. By assembling nanocrystals into an ordered supercrystal, the excitations created by light can cooperate rather than compete, which allows light to be amplified much more efficiently,” Professor Jasieniak said.
Dr. Manoj Sharma, who led the experimental work at Monash, said their approach revealed new possibilities in nanocrystal assemblies. “By assembling nanocrystals into a highly ordered supercrystal, we show that optical gain is no longer limited by single-particle biexcitons, which are inefficient and prone to energy losses, but instead arises from collective excitonic interactions across the whole structure,” Dr. Sharma said.