Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The magic of magnons: Material properties changed non-thermally using light and magnons

“The result was a huge surprise for us. No theory has ever predicted it,” says Davide Bossini.

Not only does the process work—it also has spectacular effects. By driving high-frequency pairs via laser pulses, the physicists succeeded in changing the frequencies and amplitudes of other magnons—and thus the magnetic properties of the material—in a non-thermal way.

“Every solid has its own set of frequencies: electronic transitions, lattice vibrations, magnetic excitations. Every material resonates in its own way,” explains Bossini. It is precisely this set of frequencies that can be influenced through the new process.

Rabi-like splitting observed under electrical control in artificial magnets

Rabi-like splitting is one of the key concepts in modern quantum technology. Fully understanding it can help us advance our knowledge in quantum information processing. Assistant Professor Aakanksha Sud (Tohoku University), Dr. Kei Yamamoto (JAEA), Professor Shigemi Mizukami (Tohoku University), and collaborators discovered that Rabi-like splitting could be achieved using nonlinear coupling, which remarkably preserves the symmetries of the system. This result opens up various possibilities to deepen our understanding of nonlinear dynamics and coupling phenomena in artificial control.

The findings were published in Physical Review Letters on June 20, 2025.

In , when there is a coupling between two harmonic oscillators with an ideal oscillation , the oscillation frequency splits to two different frequencies in the coupled system. The difference in these two frequencies is referred to as Rabi .

/* */