Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

DOI Not Found

This Research Article adds new information to our understanding of critical illness phenotypes.

Narges E-Gen Alipanah-Lechner & team perform multi-omics analysis of patients with ARDS, revealing 4 molecular signatures associated with death, all characterized by mitochondrial dysfunction.


The DOI entered is not a valid DOI: it should start with 10 followed by a dot, and contain a slash with no preceding whitespace.

The email address entered is invalid.

Please contact us if you wish to report this anyway.

It’s Official: Astronomers Detect Complex Sulfur Molecule in Interstellar Space

In the heart of our galaxy, scientists have discovered the largest sulfur-bearing molecule ever detected beyond Earth, with significant implications for the study of the cosmic origins of life.

The chemical is known as thiepine, or 2,5-cyclohexadiene-1-thione (C₆H₆S), a ring-shaped sulfur-bearing hydrocarbon produced in biochemical reactions.

When examining the molecular cloud G+0.693–0.027, a star-forming region about 27,000 light-years from Earth near the center of the Milky Way, astronomers from the Max Planck Institute for Extraterrestrial Physics (MPE) and the CSIC-INTA Centro de Astrobiología (CAB) detected this complex molecule in space for the first time.

The Computer That Consumes Stars

And a black hole would be a type of computer if we could use it.


What is the ultimate limit of a civilization? It isn’t conquering a galaxy. It is processing power.

A “Matrioshka Brain” is a megastructure so massive it encases an entire star. It is a Dyson Sphere upgraded to God-Mode. Instead of just harvesting energy, it uses the star to fuel a computer powerful enough to simulate trillions of universes.

If a civilization builds one of these, they don’t need to explore space. They can upload their minds to a digital heaven and live forever. This might be the terrifying reason why the universe is so silent.

Chapters:

Think of the Hume Band as your personal longevity sherpa

Most wearables tell you what you did.
The Hume Band tells you whether it’s helping or hurting you.
What I like is the idea of metabolic momentum — seeing whether your daily habits are accelerating or slowing your pace of aging, based on sleep, stress, and activity over time.
It’s very “longevity-optimized” thinking: push when it’s smart, recover when it’s not, and let the data guide sustainable decisions without blood tests or guesswork.

SAVE 20% on HUME BAND with this link and USE CODE: LSN20
https://humehealth.com/pages/hume-band?bg_ref=o89scHYZhn&utm…o89scHYZhn

Myomaker and ether lipids cooperate to promote fusion-competent membrane states

This study identifies ether-linked phospholipids as modulators of Myomaker-mediated membrane fusion, revealing a lipid-centric perspective on the mechanisms driving myocyte fusion. Although we found no evidence of ceramidase activity for Myomaker, inhibiting sphingolipid biosynthesis enhanced fusion in both myocytes and BHK cells expressing Myomaker and Myomerger. These findings indicate that sphingolipids are not required for Myomaker function and may even act as antagonists of fusion. Lipidomic analyses under sphingolipid inhibition revealed an enrichment in ether lipids. Known for their fusogenic properties, these lipids were also enriched in Myomaker-containing lentiviral particles, indicating that membranes rendered fusion competent by Myomaker have higher concentrations of ether lipids. One possibility is that Myomaker may reside in, or help establish, lipid microdomains enriched in ether lipids. Functionally, increasing ether lipid levels, via Far1 overexpression or supplementation with the ether lipid precursor HG, was sufficient to induce Myomaker-dependent fusion even in the absence of Myomerger. Additionally, elevated ether lipid levels enhanced Myomaker’s localization to the plasma membrane and promoted externalization of PE and PS, hallmarks of membrane remodeling. Together, these findings suggest that ether lipids act as regulators of Myomaker activity and reveal a relationship between membrane lipid remodeling and Myomaker-mediated fusion.

Our work indicates that specific lipid classes, beyond their general fusogenic characteristics, can regulate protein-driven cell-cell fusion. One possible explanation for the ability of ether lipids to induce fusion in the presence of Myomaker is that they simply increase the amount of protein on the plasma membrane. While we detected an increase in plasma membrane-associated Myomaker after elevation of ether lipids, alternative ways to increase levels of Myomaker on the membrane, such as inhibition of autophagy, did not induce fusion, indicating that increases in plasma membrane Myomaker are not sufficient to induce fusion. This suggests that ether lipids influence the activity of Myomaker through additional mechanisms. One can hypothesize that an elevation in ether lipids promotes hemifusion-to-fusion transition by compensating for Myomerger’s activity.

/* */