Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scientists harness nature’s chirality bias to design series of complex mechanically interlocked molecules

In nature, molecules often show a strong preference for partnering with other molecules that share the same chirality or handedness. A behavior that is quite evident in the phenomenon known as homochirality-driven entanglement, where molecules that are all left-handed or all right-handed preferentially recognize and wrap around one another, forming complex and interlocked structures.

We have known about this natural behavior for quite some time, but its potential in a laboratory setting remained largely untapped—until now. By putting this principle to work, researchers cracked a new technique that tackles a long-standing challenge in molecular synthesis.

A team from Shanghai Jiao Tong University, China, and the University of Bristol, UK, leveraged stereochemical information inherent in amino acids to guide the synthesis of a library of chiral Solomon links —a class of complex, mechanically interlocked molecules (MIMs) with doubly interlocked structures.

Third exoplanet detected in the planetary system HD 176986

Using HARPS and HARPS-N spectrographs, astronomers have observed a nearby K-type star designated HD 176986, known to host two super-Earth exoplanets. The observations resulted in the discovery of another planet in the system at least several times more massive than Earth. The finding was detailed in a paper published January 28 in the Astronomy & Astrophysics journal.

Laser‑written glass chip pushes quantum communication toward practical deployment

As quantum computers continue to advance, many of today’s encryption systems face the risk of becoming obsolete. A powerful alternative—quantum cryptography—offers security based on the laws of physics instead of computational difficulty. But to turn quantum communication into a practical technology, researchers need compact and reliable devices that can decode fragile quantum states carried by light.

A new study from teams at the University of Padua, Politecnico di Milano, and the CNR Institute for Photonics and Nanotechnologies shows how this goal can be approached using a simple material: borosilicate glass. As reported in Advanced Photonics, their work demonstrates a high-performance quantum coherent receiver fabricated directly inside glass using femtosecond laser writing. The approach provides low optical loss, stable operation, and broad compatibility with existing fiber-optic infrastructure—key factors for scaling quantum technologies beyond the laboratory.

The brain on books: How reading reshapes language processing

Learning to read reshapes how the brain processes language. New research from Baycrest and the University of São Paulo shows that learning to read fundamentally changes how the brain responds to spoken language, even when no written words are present. While previous brain imaging studies have demonstrated that literacy strongly affects how the brain responds to written words, this study is among the first to show differences in brain activity during listening alone.

The findings confirm that as people learn to read, they develop a skill known as phonemic awareness, the ability to hear and manipulate the individual sounds that make up spoken words, a core foundation of reading. The study shows that learning to read improves how the brain processes spoken language by increasing sensitivity to these component sounds. This, in turn, strengthens short-term verbal memory, supporting the ability to learn complex skills and manage the cognitive demands of daily life.

The work is published in the journal Cortex.

A kidney drug may help restore fertility in premature ovarian insufficiency

A common kidney medication could be the key to treating a type of infertility that affects up to 3% of women under 40, according to a study published in Science.

Premature ovarian insufficiency (POI) is a condition where the ovaries stop functioning properly, leading to low estrogen levels and follicles that often fail to develop or respond to fertility treatments. This leaves the eggs in a dormant state. Current treatments are limited to managing symptoms such as hot flashes and night sweats.

For years, scientists focused on the eggs themselves, but researchers led by Tianren Wang and Kui Liu from the University of Hong Kong suspected the problem could be the environment the eggs live in (the ovarian stroma).

DeepChopper model improves RNA sequencing research by mitigating chimera artifacts

Scientists in the laboratory of Rendong Yang, Ph.D., associate professor of Urology, have developed a new large language model that can interpret transcriptomic data in cancer cell lines more accurately than conventional approaches, as detailed in a recent study published in Nature Communications.

Long-read RNA sequencing technologies have transformed transcriptomics research by detecting complex RNA splicing and gene fusion events that have often been missed by conventional short-read RNA-sequencing methods.

Among these technologies includes nanopore direct RNA sequencing (dRNA-seq), which can sequence full-length RNA molecules directly and produce more accurate analyses of RNA biology. However, previous work suggests this approach may generate chimera artifacts—in which multiple RNA sequences incorrectly join to form a single RNA sequence—and limit the reliability and utility of the data.

Microfluidic method boosts control and separation of tiny particles—a promising tool for medical research

In nanoscale particle research, precise control and separation have long been a bottleneck in biotechnology. Researchers at the University of Oulu have now developed a new method that improves particle separation and purification. The promising technique could be applied, for example, in cancer research.

Separating nanosized particles remains a persistent challenge in biotechnology. Once particle size drops below a few hundred nanometers, their behavior becomes dominated by diffusion—the random walk of particles. This weakens the forces used to guide them, causing separation accuracy to collapse.

A microfluidics research group led by Professor Caglar Elbuken at the University of Oulu has developed a new solution to the problem. The method significantly improves the separation and purification of both small synthetic particles and nanoscale vesicles secreted by living cells.

3D ‘polar chiral bobbers’ identified in ferroelectric thin films

A novel type of three-dimensional (3D) polar topological structure, termed the “polar chiral bobber,” has been discovered in ferroelectric oxide thin films, demonstrating promising potential for high-density multistate non-volatile memory and logic devices. The result was achieved by a collaborative research team from the Institute of Metal Research (IMR) of the Chinese Academy of Sciences, the Songshan Lake Materials Laboratory, and other institutions. The findings were published in Advanced Materials on January 30.

Topological polar textures in ferroelectrics, such as flux-closures, vortices, skyrmions, merons, Bloch points, and high-order radial vortices discovered in recent years, have attracted wide interest for future electronic applications. However, most known polar states possess limited configurational degrees of freedom, constraining their potential for multilevel data storage.

In this study, the researchers used phase-field simulations and aberration-corrected transmission electron microscopy to predict and experimentally confirm the existence of polar chiral bobbers in (111)-oriented ultrathin PbTiO₃ ferroelectric films. This 3D topological structure is characterized by a nanoscale domain with out-of-plane polarization opposite to its surroundings, which starts from the film surface and terminates at a Bloch point inside the film.

Muon Knight shift reveals the behavior of superconducting electron pairs

Quantum materials and superconductors are difficult enough to understand on their own. Unconventional superconductors, which cannot be explained within the framework of standard theory, take the enigma to an entirely new level. A typical example of unconventional superconductivity is strontium ruthenate, SRO214, the superconductive properties of which were discovered by a research team that included Yoshiteru Maeno, who is currently at the Toyota Riken—Kyoto University Research Center.

The findings are published in the journal Physical Review Letters.

Debate over SRO214’s superconducting nature.

Could electronic beams in the ionosphere remove space junk?

A possible alternative to active debris removal (ADR) by laser is ablative propulsion by a remotely transmitted electron beam (e-beam). The e-beam ablation has been widely used in industries, and it might provide higher overall energy efficiency of an ADR system and a higher momentum-coupling coefficient than laser ablation. However, transmitting an e-beam efficiently through the ionosphere plasma over a long distance (10 m–100 km) and focusing it to enhance its intensity above the ablation threshold of debris materials are new technical challenges that require novel methods of external actions to support the beam transmission.

Therefore, Osaka Metropolitan University researchers conducted a preliminary study of the relevant challenges, divergence, and instabilities of an e-beam in an ionospheric atmosphere, and identified them quantitatively through numerical simulations. Particle-in-cell simulations were performed systematically to clarify the divergence and the instability of an e-beam in an ionospheric plasma.

The major phenomena, divergence and instability, depended on the densities of the e-beam and the atmosphere. The e-beam density was set slightly different from the density of ionospheric plasma in the range from 1010 to 1012 m−3. The e-beam velocity was changed from 106 to 108 m/s, in a nonrelativistic range.

/* */