Menu

Blog

Page 380

Aug 2, 2024

Cosmic microwave background experiments could probe connection between cosmic inflation, particle physics

Posted by in categories: cosmology, particle physics

Various large-scale astrophysical research projects are set to take place over the next decade, several of which are so-called cosmic microwave background (CMB) experiments. These are large-scale scientific efforts aimed at detecting and studying CMB radiation, which is essentially thermal radiation originating from the early universe.

Aug 2, 2024

Scientists pin down the origins of the moon’s tenuous atmosphere

Posted by in categories: particle physics, space

While the moon lacks any breathable air, it does host a barely-there atmosphere. Since the 1980s, astronomers have observed a very thin layer of atoms bouncing over the moon’s surface. This delicate atmosphere—technically known as an “exosphere”—is likely a product of some kind of space weathering. But exactly what those processes might be has been difficult to pin down with any certainty.

Aug 2, 2024

Scientists discuss why we might not spot solar panel technosignatures

Posted by in categories: alien life, solar power, sustainability

One of NASA’s key priorities is understanding the potential for life elsewhere in the universe. NASA has not found any credible evidence of extraterrestrial life—but NASA is exploring the solar system and beyond to help us answer fundamental questions, including whether we are alone in the universe.

Aug 2, 2024

BNP-Track algorithm offers a clearer picture of biomolecules in motion

Posted by in category: information science

It’s about to get easier to catch and analyze a high-quality image of fast-moving molecules. Assistant Professor Ioannis Sgouralis, Department of Mathematics, and colleagues have developed an algorithm that adds a new level to microscopy: super-resolution in motion.

Aug 2, 2024

Sun’s Next Solar Cycle Detected Early in Sound Waves

Posted by in categories: energy, space

The Sun’s next 11-year solar cycle has been detected in internal sound waves, even though the current Cycle 25 is at its solar maximum and won’t end until mid-2025. This peak period increases sunspots, flares, and coronal mass ejections, sending more electromagnetic energy towards Earth.

Even though the Sun is only halfway through its current 11-year solar cycle, the first rumblings of the next one have already been detected in sound waves inside our home star.

This existing cycle is now at its peak, or ‘solar maximum’ — which is when the Sun’s magnetic field flips and its poles swap places — until mid-2025.

Aug 2, 2024

45-Year-Old Theory Confirmed: Physicists Shed New Light on the “Invisible” Energy States of Molecules

Posted by in categories: biotech/medical, security

Artistic representation of hyper-Raman optical activity: twisted light (red helices) incident on molecules arranged on a helical scaffold (white dots) produce hyper-Raman scattering spectra (multicoloured light patches) that express ‘chirality’ (patches in spiral patterns and broken mirror). Credit: Ventsislav Valev and Kylian ValevAn international team of scientists, led by physicists from the University of Bath, has demonstrated a new optical phenomenon that could significantly impact various fields, including pharmaceutical science, security, forensics, environmental science, art conservation, and medicine.

Molecules rotate and vibrate in very specific ways. When light shines on them it bounces and scatters. For every million light particles (photons), a single one changes colour. This change is the Raman effect. Collecting many of these color-changing photons paints a picture of the energy states of molecules and identifies them.

Yet some molecular features (energy states) are invisible to the Raman effect. To reveal them and paint a more complete picture, ‘hyper-Raman’ is needed.

Aug 2, 2024

Incredibly Rare 520-Million-Year-Old Worm Fossil Solves Ancient Evolutionary Mystery

Posted by in category: biotech/medical

Durham University researchers discovered an extraordinarily detailed 520-million-year-old fossil, Youti yuanshi, revealing significant evolutionary insights into early arthropods’ complex anatomy and development.

A recent study conducted by researchers at Durham University has unveiled an exceptionally rare and detailed fossil named Youti yuanshi, providing a glimpse into one of the earliest ancestors of modern insects, spiders, crabs, and centipedes.

This fossil dates back over 520 million years to the Cambrian period, when the major animal groups we know today were first evolving. This fossil belongs to a group called the euarthropods, which includes modern insects, spiders, and crabs. What makes this fossil so special is that the tiny larva, no bigger than a poppy seed, has its internal organs preserved in exceptional quality.

Aug 2, 2024

New Microscope Unlocks Hidden Atomic Architecture in Advanced Materials

Posted by in categories: engineering, particle physics

Researchers at the University of Sydney have developed a new microscopy method that uses atom probe tomography to observe atomic-scale changes in materials. This advancement enhances understanding of materials properties and could lead to stronger alloys for aerospace, more efficient semiconductors, and better magnets for motors.

Researchers at the University of Sydney have developed a new microscopy method using atom probe tomography to explore atomic-level changes in materials, promising significant advances in materials science and engineering.

A new microscopy technique enables researchers to observe minute changes in the atomic structure of crystalline materials, such as advanced steels used in shipbuilding and custom silicon for electronics. This method has the potential to enhance our understanding of the fundamental origins of material properties and behavior.

Aug 2, 2024

Scientists Discover New Class of Semiconductor Nanocrystals

Posted by in category: chemistry

NRL scientists have discovered new semiconductor nanocrystals with bright ground-state excitons, potentially revolutionizing light-emitting devices and resolving the dark-exciton problem.

Scientists at the U.S. Naval Research Laboratory (NRL) have confirmed the identification of a new class of semiconductor nanocrystals with bright ground-state excitons. This significant advancement in optoelectronics was recently published in the American Chemical Society (ACS) journal, ACS Nano.

The groundbreaking theoretical research could revolutionize the development of highly efficient light-emitting devices and other technologies.

Aug 2, 2024

Mission Possible? NASA and Boeing Advance With Starliner Flight Test Evaluations

Posted by in category: space

NASA and Boeing are meticulously analyzing recent testing data of the Starliner spacecraft’s propulsion system to ensure its readiness for undocking and safe return from the International Space Station.

The teams are working on finalizing undocking procedures, ensuring system reliability, and conducting simulations. Additionally, astronauts Butch Wilmore and Suni Williams are assisting with various tasks aboard the station, maintaining continuous communication with mission control.

Testing and analysis of starliner’s propulsion system.

Page 380 of 11,915First377378379380381382383384Last