Menu

Blog

Page 3271

Jan 19, 2023

Couple Captures Rare Footage of a Giant Squid Swimming Off The Coast of Japan

Posted by in category: business

A pair of scuba divers has captured rare video and photos of a 2.5-meter (eight-foot) giant squid swimming in the waters off Japan’s west coast.

Earlier this month, Yosuke Tanaka and his wife Miki, who operate a diving business in Toyooka city in the Hyogo region, were alerted to the squid by a fishing equipment vendor who had spotted it in a bay.

Continue reading “Couple Captures Rare Footage of a Giant Squid Swimming Off The Coast of Japan” »

Jan 19, 2023

New neuroscience research identifies a respiration-related brain network

Posted by in categories: biological, neuroscience

A recent neuroimaging study has identified a link between respiration and neural activity changes in rats. The findings, which have been published in the journal eLife, suggest that breathing might modulate neural responses across the brain.

“Breathing is an essential physiologic process for a living organism,” said study author Nanyin Zhang, the Lloyd & Dorothy Foehr Huck Chair in Brain Imaging and director of the Center for Neurotechnology in Mental Health Research at Penn State.

“Scientists know that respiration is controlled by the brain stem, and the breathing process can modulate neural activity changes in several brain regions. However, people still do not have a comprehensive picture about brain-wide regions involved during breathing. This question can in principle be answered using a technique called functional magnetic resonance imaging (fMRI), a non-invasive neuroimage method that allows us to map neural activity in the whole brain.”

Jan 19, 2023

Chips using integrated photonic circuits could help close the ‘terahertz gap’

Posted by in categories: computing, electronics

Researchers have developed an extremely thin chip with an integrated photonic circuit that could be used to exploit the so-called terahertz gap – lying between 0.3-30THz in the electromagnetic spectrum – for spectroscopy and imaging.

This gap is currently something of a technological dead zone, describing frequencies that are too fast for today’s electronics and telecommunications devices, but too slow for optics and imaging applications.

However, the scientists’ new chip now enables them to produce terahertz waves with tailored frequency, wavelength, amplitude and phase. Such precise control could enable terahertz radiation to be harnessed for next-generation applications in both the electronic and optical realms.

Jan 19, 2023

Massive Star Formation Displays Self-Control

Posted by in categories: energy, space

When it comes to star formation in interstellar clouds of gas and dust, there’s an ongoing tug-of-war between two cloud-shaping processes. Young, massive stars inject energy into their surroundings in a way that both disrupts star formation by shredding the surrounding medium and encourages it by collecting dense gas shells that are prone to gravitational collapse. Which of these feedback processes dominates has been unclear, but new observations by Lars Bonne of NASA’s Ames Research Center and his colleagues suggest that stellar feedback significantly suppresses star formation. These findings—presented earlier this month at the 241st Meeting of the American Astronomy Society in Seattle—provide a missing piece in understanding why proposed rapid star-formation rates have long misaligned with observations.

Recent observations suggest that the formation of high-mass stars—ones greater than 8 times the mass of the Sun—is associated with the gravitational collapse of the surrounding cloud of molecular gas. This collapse leads to a high concentration of material, which should induce further star formation. However, the expected high star-formation rates are not observed, with typically only a few percent of the molecular cloud’s mass becoming new stars. “If stellar feedback indeed disperses the collapsing molecular cloud on the same timescale that new stars form, it could prevent these proposed high star-formation rates,” Bonne says. But predicting the impact and role of stellar feedback on the surrounding molecular cloud remains extremely difficult.

Now with data from NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA, now retired) and the Chandra X-ray Observatory, Bonne and his colleagues have tracked the process in real time. The first observation target was a star-forming complex called RCW 36, which is several light-years across and is located 2,900 light-years away in a molecular cloud within the constellation Vela. Like other star-forming complexes, RCW 36 consists of a large region of ionized atomic hydrogen (HII, pronounced “H-two”). This region includes a cluster of young stars and two low-density cavities that extend outward in opposite directions. A ring of gas forms a waist between the two cavities, resulting in an hourglass-like shape.

Jan 19, 2023

A Salt-Based Laser Color Converter

Posted by in category: biotech/medical

High-energy, short-pulse laser sources exist only in a limited number of colors. Researchers in the 1960s found that a liquid-filled cell, which had inadvertently been placed inside a laser’s cavity, shifted the laser’s wavelength. Now a team of scientists from Brookhaven National Laboratory (BNL), New York, show that synthetic, room-temperature liquid salts can also serve as effective laser-color-tuning media [1]. The finding could lead to a simple and energy-efficient tool for creating lasers with desired colors for medical and scientific applications.

In the 1960’s liquid technique, when a photon “hits” a liquid molecule, the photon loses energy, exiting the medium with less energy—and thus a different color—than it entered (see Focus: Holey Fibers Shed New Light). The BNL team reasoned that a salt solution could interact with photons in the same way while offering a high density of energy-swapping sites compared to either a gas or a standard liquid. The vast array of available artificial salts could also make it possible to precisely tune the energy loss caused by the salt–photon interaction, giving increased color control.

The researchers assembled their converter setup from a pulsed green laser and a 63-cm-long cell filled with a salt solution. Passing the laser through the cell, they observed that the light turned orange. The researchers measured a high color-conversion efficiency of the photons, which they attribute to the large interaction cross sections of the salt molecules and to the reduction of other forms of scattering that can inhibit wavelength conversion. The group is currently designing liquids to turn this and other lasers to myriad colors.

Jan 19, 2023

A system to enable multi-kilometer and sub-terahertz communications at extremely high frequency bands

Posted by in categories: computing, internet

After the introduction of the fifth-generation technology standard for broadband cellular networks (5G), engineers worldwide are now working on systems that could further speed up communications. The next-generation wireless communication networks, from 6G onward, will require technologies that enable communications at sub-terahertz and terahertz frequency bands (i.e., from 100GHz to 10THz).

While several systems have been proposed for enabling at these frequency bands specifically for personal use and local area networks, some applications would benefit from longer communication distances. So far, generating high-power ultrabroadband signals that contain information and can travel long distances has been challenging.

Researchers at the NASA Jet Propulsion Laboratory (JPL), Northeastern University and the Air Force Research Laboratory (AFRL) have recently developed a system that could enable multi-gigabit-per-second (Gbps) communications in the sub-terahertz frequency band over several kilometers. This system, presented in a paper in Nature Electronics, utilizes on-chip power-combining frequency multiplier designs based on Schottky diodes, semiconducting diodes formed by the junction of a semiconductor and a metal, developed at NASA JPL.

Jan 19, 2023

New nanoparticles deliver therapy throughout the brain and edit Alzheimer’s gene in mice

Posted by in categories: biotech/medical, engineering, genetics, nanotechnology, neuroscience, security

Gene therapies have the potential to treat neurological disorders like Alzheimer’s and Parkinson’s diseases, but they face a common barrier—the blood-brain barrier. Now, researchers at the University of Wisconsin-Madison have developed a way to move therapies across the brain’s protective membrane to deliver brain-wide therapy with a range of biological medications and treatments.

“There is no cure yet for many devastating disorders,” says Shaoqin “Sarah” Gong, UW-Madison professor of ophthalmology and visual sciences and biomedical engineering and researcher at the Wisconsin Institute for Discovery. “Innovative brain-targeted delivery strategies may change that by enabling noninvasive, safe and efficient delivery of CRISPR genome editors that could, in turn, lead to genome-editing therapies for these diseases.”

CRISPR is a molecular toolkit for editing (for example, to correct mutations that may cause disease), but the toolkit is only useful if it can get through security to the job site. The is a membrane that selectively controls access to the brain, screening out toxins and pathogens that may be present in the bloodstream. Unfortunately, the bars some beneficial treatments, like certain vaccines and gene therapy packages, from reaching their targets because in lumps them in with hostile invaders.

Jan 19, 2023

Violence was widespread in early farming society, says new study

Posted by in categories: food, military

Violence and warfare were widespread in many Neolithic communities across Northwest Europe, a period associated with the adoption of farming, new research suggests.

Of the skeletal remains of more than 2,300 early farmers from 180 sites dating from around 8,000—4,000 years ago to, more than one in ten displayed weapon injuries, bioarcheologists found.

Contrary to the view that the Neolithic era was marked by peaceful cooperation, the team of international researchers say that in some regions the period from 6000BCE to 2000BCE may be a high point in conflict and violence with the destruction of entire communities.

Jan 19, 2023

Study points to link between schizophrenia and vascular alterations in the brain

Posted by in categories: biotech/medical, education, neuroscience

A study conducted in Brazil and reported in an article published in Molecular Psychiatry suggests that schizophrenia may be associated with alterations in the vascularization of certain brain regions. Researchers at the State University of Campinas (UNICAMP), D’Or Research and Education Institute (IDOR) and the Federal University of Rio de Janeiro (UFRJ) found a link between astrocytes (central nervous system cells) from patients with schizophrenia and formation of narrow blood vessels.

Schizophrenia is a severe multifactorial mental health disorder affecting around 1% of the world population. Common symptoms include loss of contact with reality (psychosis), hallucinations (hearing voices, for example), delusions or delirium, disorganized motor behavior, loss of motivation and cognitive impairment.

In the study, the researchers focused on the role of astrocytes in development of the disease. These glial cells are housekeepers of the central nervous system and important to its defense. They are the central elements of the neurovascular units that integrate neural circuitry with local blood flow and provide neurons with metabolic support.

Jan 19, 2023

New strategy uses ionic liquids to change laser colors with ease

Posted by in categories: chemistry, nuclear energy

Lasers are intense beams of colored light. Depending on their color and other properties, they can scan your groceries, cut through metal, eradicate tumors, and even trigger nuclear fusion. But not every laser color is available with the right properties for a specific job.

To fix that, scientists have found a variety of ways to convert one color of laser light into another. In a study just published in the journal Physical Review Applied, scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory demonstrate a new color-shifting strategy that is simple, efficient, and highly customizable.

The new method relies on interactions between the laser and in the chemical bonds of materials called “.” These liquids are made only of positively and negatively charged ions, like ordinary table salt, but they flow like viscous fluids at room temperature. Simply shining a laser through a tube filled with a particular ionic liquid can downshift the laser’s energy and change its color while retaining other important properties of the laser beam.