Menu

Blog

Page 3128

Jun 21, 2023

Observations of high-mass star seeds defy models

Posted by in categories: cosmology, evolution

Astronomers have mapped 39 interstellar clouds where high-mass stars are expected to form. This large data set shows that the accepted model of low-mass star formation needs to be expanded to explain the formation of high-mass stars. This suggests the formation of high-mass stars is fundamentally different from the formation of low-mass stars, not just a matter of scale.

High-mass stars play an important role in the evolution of the universe through the release of heavy elements and the produced when a massive star explodes in a supernova. Despite their importance, the way form remains poorly understood due to their rarity.

To better understand massive star formation a team led by Kaho Morii, Patricio Sanhueza, and Fumitaka Nakamura used the Atacama Large Millimeter/submillimeter Array (ALMA) to observe 39 infrared dark clouds (IRDCs). IRDCs are massive, cold, and dense clouds of gas and dust; and are thought to be the sites of massive star formation. The team focused on clouds showing no signs of star formation, to understand the beginning of the formation process before ignite. In the 39 clouds, the team found more than 800 stellar seeds, referred to as molecular cloud cores, which astronomers think will evolve into stars.

Jun 21, 2023

Did Life Evolve More Than Once? Researchers Are Closing In on an Answer

Posted by in category: chemistry

Eventually, these molecules probably evolved a lipid (fatty) boundary separating the internal environment of the organism from the exterior, forming protocells. Protocells could concentrate and organize better the molecules needed in biochemical reactions, providing a contained and efficient metabolism.

Life on Repeat?

Abiogenesis could have happened more than once. Earth could have birthed self-replicating molecules several times, and maybe early life for thousands or millions of years just consisted of a bunch of different self-replicating RNA molecules, with independent origins, competing for the same building blocks. Alas, due to the ancient and microscopic nature of this process, we may never know.

Jun 21, 2023

Tesla announces it produced 10 million 4680 battery cells at Giga Texas

Posted by in categories: sustainability, transportation

Tesla announced it produced 10 million 4,680 battery cells at Gigafactory Texas. It is a good sign for the automaker’s production ramp-up, which relies heavily on the new cell.

The 4,680 battery cell format has taken the industry by storm since Tesla unveiled its own cell strategy at Battery Day in 2020.

The automaker claimed the potential to reduce battery cost by over 50% with the new design; it has been trying to bring it to volume production since, but it has run into some bottlenecks.

Jun 21, 2023

AI finds potential anti-aging molecules

Posted by in categories: biotech/medical, chemistry, life extension, robotics/AI

This study demonstrates that AI can be incredibly effective in helping us identify new drug candidates – particularly at early stages of drug discovery and for diseases with complex biology or few known molecular targets.


A machine learning model has been trained to recognise the key features of chemicals with senolytic activity. It recently found three chemicals able to remove senescent cells without damaging healthy cells.

Molecular structure of oleandrin. Credit: Mplanine, CC BY-SA 4.0, via Wikimedia Commons.

Continue reading “AI finds potential anti-aging molecules” »

Jun 21, 2023

IBM wants to build a 100,000-qubit quantum computer

Posted by in categories: computing, quantum physics

The company wants to make large-scale quantum computers a reality within just 10 years.

Jun 21, 2023

Will Artificial Intelligence Help Us Talk to Animals?

Posted by in category: robotics/AI

Artificial intelligence has made remarkable progress in recent years, but can it help us talk to animals? Explore the possibilities and limitations of AI in communicating with other species.

Jun 21, 2023

Microsoft says its weird new particle could improve quantum computers

Posted by in categories: computing, particle physics, quantum physics

Researchers at Microsoft say they have created elusive quasiparticles called Majorana zero modes – but scientists outside the company are sceptical.

By Karmela Padavic-Callaghan

Jun 21, 2023

95% of the Universe is a total mystery

Posted by in categories: biotech/medical, computing, internet

That’s the ordinary matter of everyday life: your hair and clothes, your atoms and organs, the food you eat and the dogs that kiss you, the air and the sea, the Sun and the Moon. Everything we know — everything we see — is just 5% of everything in the Universe.

The remaining 95% of the Universe is stuff that we can’t see, don’t yet understand. An extraordinarily vast portion of the cosmos is still unknown. Despite the technological advancements of the last century, even with computers at our fingertips and the worldwide internet and space-based observatories mapping the far reaches of our Universe, there is still so much that we don’t understand.

We have grown leaps and bounds since the days of the ancient Greeks and Egyptians, even since Copernicus and Kepler. But in many ways, we are still novices playing with toy models seeking to understand the stars.

Jun 21, 2023

“Hydration Solids”: The New Class of Matter Shaking Up Science

Posted by in categories: biological, chemistry, particle physics, science

For many years, the fields of physics and chemistry have held the belief that the properties of solid materials are fundamentally determined by the atoms and molecules they consist of. For instance, the crystalline nature of salt is credited to the ionic bond formed between sodium and chloride ions. Similarly, metals such as iron or copper owe their robustness to the metallic bonds between their respective atoms, and the elasticity of rubbers stems from the flexible bonds in the polymers that form them. This principle also applies to substances like fungi, bacteria, and wood.

Or so the story goes.

A new paper recently published in Nature upends that paradigm, and argues that the character of many biological materials is actually created by the water that permeates these materials. Water gives rise to a solid and goes on to define the properties of that solid, all the while maintaining its liquid characteristics.

Jun 21, 2023

Scientists develop new technique to peer into the genome’s spatial architecture

Posted by in categories: biotech/medical, electronics

People who owned black-and-white television sets until the 1980s didn’t know what they were missing until they got a color TV. A similar switch could happen in the world of genomics as researchers at the Berlin Institute of Medical Systems Biology of the Max Delbrück Center (MDC-BIMSB) have developed a technique called Genome Architecture Mapping (“GAM”) to peer into the genome and see it in glorious technicolor. GAM reveals information about the genome’s spatial architecture that is invisible to scientists using solely Hi-C, a workhorse tool developed in 2009 to study DNA interactions, reports a new study in Nature Methods by the Pombo lab.

With a black-and-white TV, you can see the shapes but everything looks grey. But if you have a color TV and look at flowers, you realize that they are red, yellow and white and we were unaware of it. Similarly, there’s also information in the way the genome is folded in three-dimensions that we have not been aware of.