Toggle light / dark theme

5th BigBrain Workshop 2021
22 September 2021 — Applications.
Chair: Kathleen Rockland.

The Unique Cytoarchitecture and Wiring of The Default Mode Network.
Casey Paquola.

Background. Complex behaviours benefit from parallel distributed processing in multiple brain networks. The roles of certain networks are well-defined, while others remain elusive. Arguably, none are so elusive as the default mode network (DMN); a distributed set of brain regions that decrease in activity during many externally oriented tasks. Revealing the cytoarchitectural composition and connectional layout of the DMN is crucial to defining its role in complex behaviours.

Method. We examined the cytoarchitectural composition of the DMN using an established cortical type atlas (García-Cabezas et al., 2020; Von Economo and Koskinas, 1925) and by applying non-linear dimensionality reduction to BigBrain-derived staining intensity profiles (Paquola et al., 2019). Next, we used magnetic resonance imaging (MRI) to explicate structural wiring and effective connectivity of the whole brain. In both modalities, we examined the influence of cytoarchitecture on extrinsic connectivity of the DMN. Finally, we evaluated the uniqueness of the DMN relative to other large-scale functional brain networks.

Results. We discovered profound diversity of DMN cytoarchitecture. Each circumscribed subregion of the DMN contains a broad range of cytoarchitectural types, however, the spatial pattern within each subregion differs. The patterns vary in smoothness from a gradient in the parahippocampus to interdigitation in the superior frontal gyrus. We found that cytoarchitectural differentiation in the DMN aligns with its structural wiring and extrinsic information flow. The structural heterogeneity of the DMN engenders a network-level balance in communication with external and internal sources, which is distinctive, relative to other functional networks.
Conclusion. These findings suggest a novel wiring diagram of structural and functional connectivity of the DMN that is compatible with its putative role in balancing internal and external information. Furthermore, our work demonstrates the import of neuroanatomical evidence in specifying theories of functional networks.

All information about the 5th BigBrain Workshop 2021, including detailed authors information: https://go.fzj.de/BigBrainWorkshop2021

Basically on the pro side it could be something good to help earth but really if is on the bad side we probably want to cloak the earth with an invisibility cloak and force fields ideally so they don’t wipe us out.


An experiment aboard NASA’s Psyche mission achieved “first light” by sending and receiving its first deep-space laser communications from far beyond the moon.

An amazing graph theoretic analysis of the C. elegans neuropeptide connectome!


Neuromodulation by peptides is essential for brain function. By comprehensively mapping neuropeptide signaling in the nematode C. elegans, Ripoll-Sánchez et al. define a dense wireless network whose organization differs in important ways from wired brain circuits. This network is a prototype for understanding neuropeptide signaling networks in larger brains.

Just weeks before the management shakeup at OpenAI rocked Silicon Valley and made international news, the company’s cofounder and chief scientist Ilya Sutskever explored the transformative potential of artificial general intelligence (AGI), highlighting how it could surpass human intelligence and profoundly transform every aspect of life. Hear his take on the promises and perils of AGI — and his optimistic case for how unprecedented collaboration will ensure its safe and beneficial development. (Recorded October 17, 2023)

If you love watching TED Talks like this one, become a TED Member to support our mission of spreading ideas: https://ted.com/membership.

Follow TED!
Twitter: https://twitter.com/TEDTalks.
Instagram: https://www.instagram.com/ted.
Facebook: https://facebook.com/TED
LinkedIn: https://www.linkedin.com/company/ted-conferences.
TikTok: https://www.tiktok.com/@tedtoks.

The TED Talks channel features talks, performances and original series from the world’s leading thinkers and doers. Subscribe to our channel for videos on Technology, Entertainment and Design — plus science, business, global issues, the arts and more. Visit https://TED.com to get our entire library of TED Talks, transcripts, translations, personalized talk recommendations and more.

https://youtu.be/vR1szwflVxY

TED’s videos may be used for non-commercial purposes under a Creative Commons License, Attribution–Non Commercial–No Derivatives (or the CC BY – NC – ND 4.0 International) and in accordance with our TED Talks Usage Policy: https://www.ted.com/about/our-organization/our-policies-term…age-policy. For more information on using TED for commercial purposes (e.g. employee learning, in a film or online course), please submit a Media Request at https://media-requests.ted.com.

The planet Mercury seems like a place inhospitable to life, with surface temperatures reaching a blistering 800 degrees Fahrenheit due to its extremely close proximity to the Sun.

But new research suggests that there are regions on the Solar System’s smallest planet that may have the right conditions for biological life to survive.

Scientists at the Planetary Science Institute (PSI) in Arizona say they’ve found evidence of salt glaciers on the planet’s surface, regions that are similar to extremely harsh and salt-rich environments on Earth where life still finds a way to exist.

Weaving piezoelectric polymers into nanofibers reveals a surprising pathway to boost stem cell growth naturally, without external power.

Our bodies are a complex tapestry of cells, woven into tissues and organs, like bones, muscle, and skin. All these cells begin as blank slates called stem cells, which are directed to become all the unique cell types in the body by a myriad of genetic and environmental cues.

To harness the biomedical potential of stem cells, researchers have long sought ways to untangle these factors and find a recipe to efficiently grow any desired cell type. Now, expertise from textile research is helping create a new platform to achieve this goal.