Menu

Blog

Page 2873

Mar 25, 2023

Big improvements to brain-computer interface

Posted by in categories: biotech/medical, chemistry, computing, cyborgs, engineering, neuroscience

When people suffer spinal cord injuries and lose mobility in their limbs, it’s a neural signal processing problem. The brain can still send clear electrical impulses and the limbs can still receive them, but the signal gets lost in the damaged spinal cord.

The Center for Sensorimotor Neural Engineering (CSNE)—a collaboration of San Diego State University with the University of Washington (UW) and the Massachusetts Institute of Technology (MIT)—is working on an implantable brain chip that can record neural electrical signals and transmit them to receivers in the limb, bypassing the damage and restoring movement. Recently, these researchers described in a study published in the journal Nature Scientific Reports a critical improvement to the technology that could make it more durable, last longer in the body and transmit clearer, stronger signals.

The technology, known as a brain-computer interface, records and transmits signals through electrodes, which are tiny pieces of material that read signals from brain chemicals known as neurotransmitters. By recording brain signals at the moment a person intends to make some movement, the interface learns the relevant electrical signal pattern and can transmit that pattern to the limb’s nerves, or even to a prosthetic limb, restoring mobility and motor function.

Mar 25, 2023

Graphene and gold make a better brain probe

Posted by in categories: biotech/medical, cyborgs, neuroscience

A team from Korea created more flexible neural electrodes that minimize tissue damage and still transmit clear brain signals.

Electrodes placed in the record neural activity, and can help treat neural diseases like Parkinson’s and epilepsy. Interest is also growing in developing better brain-machine interfaces, in which electrodes can help control prosthetic limbs. Progress in these fields is hindered by limitations in electrodes, which are relatively stiff and can damage soft brain tissue.

Designing smaller, gentler electrodes that still pick up brain signals is a challenge because brain signals are so weak. Typically, the smaller the electrode, the harder it is to detect a signal. However, a team from the Daegu Gyeongbuk Institute of Science & Technology in Korea developed new probes that are small, flexible and read brain signals clearly.

Mar 25, 2023

Important step towards accurate use of stem cell–based disease models

Posted by in categories: biotech/medical, genetics, neuroscience

Induced pluripotent stem cells offer great therapeutic potential and are a valuable tool for understanding how different diseases develop. New research shows that such stem cell lines should be regularly screened for genetic mutations to ensure the accuracy of the disease models.

In the past 10 years, scientists have learned to create induced (iPSC) from ordinary cells by genetic reprogramming. These cells are widely used to study diseases, as they can be differentiated to almost any cell type of the body, and they can be generated from any individual. However, a key remaining methodological challenge is that the differentiation process is subject to major technical variation for mostly unknown reasons.

HiLIFE Tenure Track Professor Helena Kilpinen and her group at the University of Helsinki use for studying the biological mechanisms of neurodevelopmental and other brain-related diseases.

Mar 25, 2023

Developing smart light traps inspired by photosynthesis

Posted by in categories: chemistry, energy, nanotechnology, sustainability

Plants use photosynthesis to harvest energy from sunlight. Now researchers at the Technical University of Munich (TUM) have applied this principle as the basis for developing new sustainable processes which in the future may produce syngas (synthetic gas) for the large-scale chemical industry and be able to charge batteries.

Syngas, a mixture of carbon monoxide and hydrogen, is an important intermediate product in the manufacture of many chemical starter materials such as ammonia, methanol and synthetic hydrocarbon fuels. “Syngas is currently made almost exclusively using fossil ,” says Prof. Roland Fischer from the Chair of Inorganic and Organometallic Chemistry.

A yellow powder, developed by a research team led by Fischer, is to change all that. The scientists were inspired by photosynthesis, the process plants use to produce chemical energy from light. “Nature needs carbon dioxide and water for photosynthesis,” says Fischer. The nanomaterial developed by the researchers imitates the properties of the enzymes involved in photosynthesis. The “nanozyme” produces syngas using carbon dioxide, water and light in a similar manner.

Mar 25, 2023

Silver sawtooth creates valley-coherent light for nanophotonics

Posted by in categories: energy, quantum physics

Scientists at the University of Groningen used a silver sawtooth nanoslit array to produce valley-coherent photoluminescence in two-dimensional tungsten disulfide flakes at room temperature. Until now, this could only be achieved at very low temperatures. Coherent light can be used to store or transfer information in quantum electronics. This plasmon-exciton hybrid device is promising for use in integrated nanophotonics (light-based electronics). The results were published in Nature Communications on 5 February.

Tungsten disulfide has interesting electronic properties and is available as a 2-D material. “The electronic structure of monolayer shows two sets of lowest energy points or valleys,” explains Associate Professor Justin Ye, head of the Device Physics of Complex Materials group at the University of Groningen. One possible application is in photonics, as it can emit light with valley-dependent circular polarization—a new degree of freedom to manipulate information. However, valleytronics requires coherent and polarized light. Unfortunately, previous work showed that photoluminescence polarization in tungsten disulfide is almost random at .

Mar 25, 2023

Using chemical exfoliation to produce superconducting tungsten disulfide ink

Posted by in categories: chemistry, computing, quantum physics

A team of chemists, engineers, material scientists and physicists from Princeton University, Rutgers University and the University of Regensburg has developed a chemical exfoliation technique to produce single-molecule-thick tungsten disulfide ink. The group describes their technique in a paper published in the journal Science Advances.

As research continues into the creation of truly useful quantum computers, scientists continue to search for new materials that could support such machines. In this new effort, the research team looked into finding ways to print very cold circuits inside quantum computers using superconducting ink.

The new method involved a material consisting of layers of disulfide and potassium. The researchers exfoliated the material by dunking it into a sulfuric acid solution. This dissolved the potassium and left behind single-molecule layers of tungsten disulfide. The final step involved rinsing the acid and remnants in it, leaving the layers of tungsten suspended in a tub of water. In this state, the researchers found that the layers of tungsten disulfide could be used as a form of ink that could be printed onto various types of surfaces, such as plastic, silicon or glass. This left a one-molecule-thick coating on the material.

Mar 25, 2023

Tiny nanoparticle could have big impact on patients receiving corneal transplants

Posted by in categories: biotech/medical, nanotechnology

Corneal transplants can be the last step to returning clear vision to many patients suffering from eye disease. Each year, approximately 80,000 corneal transplantations take place in the U.S. Worldwide, more than 184,000 corneal transplantation surgeries are performed annually.

However, rejection rates for the corneal grafts can be as high as 10%. This is largely due to poor patient compliance to the medications, which require frequent administrations of topical eyedrops over a long period of time.

This becomes especially acute when patients show signs of early rejection of the transplanted corneas. When this occurs, patients need to apply topical eyedrops hourly to rescue the corneal grafts from failure.

Mar 25, 2023

A cavity leads to a strong interaction between light and matter

Posted by in categories: computing, particle physics, quantum physics

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a and a is a huge challenge due to the tiny size of the atom. However, sending the past the atom several times by means of mirrors significantly increases the probability of an interaction.

In order to generate photons, the researchers use artificial atoms, known as . These semiconductor structures consist of an accumulation of tens of thousands of atoms, but behave much like a single atom: when they are optically excited, their energy state changes and they emit a photon. “However, they have the technological advantage that they can be embedded in a ,” says Dr. Daniel Najer, who conducted the experiment at the Department of Physics at the University of Basel.

Mar 25, 2023

Flying taxi service coming to Chicago using eVTOL aircraft

Posted by in categories: sustainability, transportation

In the latest sign of growing interest in the flying taxi sector, United Airlines and air mobility startup Archer Aviation have announced an upcoming service for hops between downtown Chicago and O’Hare International Airport.

The service will offer a sustainable, low-noise, and cost-competitive alternative to ground transportation for folks traveling to and from the airport, United and Archer said in a release.

Mar 25, 2023

The Personalized Stem Cells That Could One Day Treat Parkinson’s and Heart Failure

Posted by in categories: biotech/medical, chemistry, neuroscience

Could an injection of lab-cultured brain cells, created from a person’s own cells, reverse symptoms of Parkinson’s disease? That’s an idea that Aspen Neuroscience Inc., a startup based in San Diego, plans to test in human trials later this year.

In patients with Parkinson’s, neurons die and lose the ability to make the chemical dopamine, leading to erratic, uncontrollable movements. Aspen Neuroscience will test if the newly injected cells can mature into dopamine producers, stopping the debilitating symptoms of this incurable disease, says Damien McDevitt, the company’s chief executive officer. Tests in animals have shown promise, the company says.