Menu

Blog

Page 2853

Dec 30, 2022

A new sensor uses MRI to detect light deep in the brain

Posted by in categories: biotech/medical, neuroscience

Using this approach, researchers can map how light spreads in opaque environments.

Dec 30, 2022

Researchers Can See Depression In A Brain Scan

Posted by in categories: biotech/medical, neuroscience

Depression is a difficult illness. Not only does it make you feel like crap, but like so many primarily mental illnesses, it also comes with a bucketful of misinformation and misconceptions surrounding it. Even medical specialists, whom you’d expect to be the authorities on the matter, are stumped by some aspects of the disease – the truth is, while humanity may be more informed than ever on matters of the brain, we still really don’t know what’s going on inside of it when it glitches like this.

But that may soon change. Researchers based at Baylor College of Medicine in Houston, Texas, claim to have developed what they call a “mood decoder” – a way of reading people’s emotional state just from looking at brain activity.

“This is the first demonstration of successful and consistent mood decoding of humans in these brain regions,” Baylor College neurosurgeon and project lead Sameer Sheth told MIT Technology Review. And the best part? The team have also found a way to stimulate a positive mood in patients’ brains.

Dec 30, 2022

Scientists overcome the scaling challenges of quantum optomechanical systems

Posted by in categories: materials, quantum physics

Optomechanics simulates graphene lattices.

Dec 30, 2022

Experts Warn of “Quantum Apocalypse”

Posted by in categories: computing, encryption, quantum physics

Experts are warning that quantum computers could eventually overpower conventional encryption methods, a potentially dangerous fate for humanity that they’re evocatively dubbing the “quantum apocalypse,” the BBC reports.

Cracking today’s toughest encryption would take virtually forever today — but with the advent of quantum computers, they’re warning, the process could be cut down to mere seconds.

And that kind of number-crunching power could have disastrous consequences if it were to land in the wrong hands.

Dec 30, 2022

Decoding nature’s masterful engineering using math

Posted by in categories: bioengineering, biological, mathematics, media & arts

Logic gates in biology can be set up to lead to timing important biological events. How is this done?

Edit: at 4:00, not all pathways make use of this motif. This is just one way timing can happen in biology.

Continue reading “Decoding nature’s masterful engineering using math” »

Dec 30, 2022

Michael Levin: Anatomical decision-making

Posted by in categories: biotech/medical, evolution, information science, life extension, neuroscience

Anatomical decision-making by cellular collectives: Bioelectrical pattern memories, regeneration, and synthetic living organisms.

A key question for basic biology and regenerative medicine concerns the way in which evolution exploits physics toward adaptive form and function. While genomes specify the molecular hardware of cells, what algorithms enable cellular collectives to reliably build specific, complex, target morphologies? Our lab studies the way in which all cells, not just neurons, communicate as electrical networks that enable scaling of single-cell properties into collective intelligences that solve problems in anatomical feature space. By learning to read, interpret, and write bioelectrical information in vivo, we have identified some novel controls of growth and form that enable incredible plasticity and robustness in anatomical homeostasis. In this talk, I will describe the fundamental knowledge gaps with respect to anatomical plasticity and pattern control beyond emergence, and discuss our efforts to understand large-scale morphological control circuits. I will show examples in embryogenesis, regeneration, cancer, and synthetic living machines. I will also discuss the implications of this work for not only regenerative medicine, but also for fundamental understanding of the origin of bodyplans and the relationship between genomes and functional anatomy.

Dec 30, 2022

#14 Michael Levin — Our Body is a Collection of Intelligent Organisms

Posted by in categories: biotech/medical, life extension

How do our bodies know what to become?

There are no instructions in our genes that code for the exact 3D structure of our bodies. There’s no tiny human contained in our DNA. So, what powers the transformation of the first cell in the embryo to a full-blown organism?

Continue reading “#14 Michael Levin — Our Body is a Collection of Intelligent Organisms” »

Dec 30, 2022

The physics of entropy and the origin of life

Posted by in category: physics

How did complex systems emerge from chaos? Physicist Sean Carroll explains.

Dec 30, 2022

Holding Information in Mind May Mean Storing It Among Synapses

Posted by in categories: internet, robotics/AI

Summary: Findings support modern thought that neural networks store information by making short-term alterations to the synapses. The study sheds new light on short-term synaptic plasticity in recent memory storage.

Source: picower institute for learning and memory.

Between the time you read the Wi-Fi password off the café’s menu board and the time you can get back to your laptop to enter it, you have to hold it in mind. If you’ve ever wondered how your brain does that, you are asking a question about working memory that has researchers have strived for decades to explain. Now MIT neuroscientists have published a key new insight to explain how it works.

Dec 30, 2022

Lasers used to throw and catch single atoms for first time

Posted by in categories: computing, particle physics, quantum physics

Lasers have been used to throw and catch extremely cold, single atoms. The technique could be used to assemble quantum computers in the future.