Menu

Blog

Page 2600

May 25, 2023

AI-Driven Maritime Custody Service Now Available Commercially

Posted by in categories: robotics/AI, satellites

BlackSky Technology and Spire Global have teamed up to create a real-time, commercially available Maritime Custody Service that can automatically detect, identify and track more than 270 thousand vessels worldwide in open water, along rivers and canals, and while docked at port.

The system uses data from Spire’s radio frequency-monitoring satellite constellation to detect emissions from maritime targets, including the ability to detect and locate dark vessels that manipulate their reported position in order to conceal nefarious activities. Then, BlackSky’s satellites automatically tip-and-cue to collect imagery and analyze the images using artificial intelligence to detect vessels, classify each vessel by type, estimate cargo and monitor change over time.

“BlackSky and Spire have developed a very cost-effective and flexible vessel tracking service capable of delivering on-demand maritime intelligence at scale,” said Patrick O’Neil, chief innovation officer at BlackSky. “The unique AI-driven system reduces end-to-end latency across the entire tasking, collection, processing, exploitation, and dissemination process. With interoperability in mind, the MCS provides an easy-to-use autonomous, continuous and predictive maritime tracking capability directly into customer hands.”

May 25, 2023

MIT’s New CRISPR-Based Gene-Editing Technique Transforms Cancer Mutation Studies

Posted by in categories: biotech/medical, education, engineering, genetics

With the new method, scientists can explore many cancer mutations whose roles are unknown, helping them develop new drugs that target those mutations.

MIT

MIT is an acronym for the Massachusetts Institute of Technology. It is a prestigious private research university in Cambridge, Massachusetts that was founded in 1861. It is organized into five Schools: architecture and planning; engineering; humanities, arts, and social sciences; management; and science. MIT’s impact includes many scientific breakthroughs and technological advances. Their stated goal is to make a better world through education, research, and innovation.

May 25, 2023

Researchers transform our understanding of crystals

Posted by in categories: biological, chemistry, engineering, nanotechnology, particle physics, solar power, space, sustainability

When most people think of crystals, they picture suncatchers that act as rainbow prisms or the semi-transparent stones that some believe hold healing powers. However, to scientists and engineers, crystals are a form of materials in which their constituents—atoms, molecules, or nanoparticles—are arranged regularly in space. In other words, crystals are defined by the regular arrangement of their constituents. Common examples are diamonds, table salt, or sugar cubes.

However, in research just published in Soft Matter, a team led by Rensselaer Polytechnic Institute’s Sangwoo Lee, associate professor in the Department of Chemical and Biological Engineering, discovered that crystal structures are not necessarily always regularly arranged. The discovery advances the field of materials science and has unrealized implications for the materials used for semiconductors, solar panels, and electric vehicle technologies.

One of the most common and important classes of crystal structures is the close-packed structures of regular spheres constructed by stacking layers of spheres in a honeycomb arrangement. There are many ways to stack the layers to construct close-packed structures, and how nature selects specific stacking is an important question in materials and physics research. In the close-packing construction, there is a very unusual structure with irregularly spaced constituents known as the random stacking of two-dimensional hexagonal layers (RHCP). This structure was first observed from cobalt metal in 1942, but it has been regarded as a transitional and energetically unpreferred state.

May 25, 2023

Decoding the Aging Process: The Impact of Blood Dilution on Biological Age (Irina Conboy at EARD)

Posted by in categories: bioengineering, biotech/medical, life extension, neuroscience

In short blood dilution is very, very good for you.


In this talk, Dr. Irina Conboy discusses the role of repair and regeneration in lifespan and healthspan, contending that these factors, rather than entropy and time progression, truly govern our aging process. She describes the research her team is pursuing, investigating whether improving the efficiency of bodily repair in older individuals could effectively make them younger. She suggests that biological age could potentially be reversed and discusses heterochronic parabiosis and plasma dilution as potential ways to accomplish that. Conboy highlights recent research suggesting that old blood has a greater impact on cellular health and function than young blood. She presents her team’s experimental research on the rejuvenation effects of plasma dilution, demonstrating its significant impact on reducing senescence, neuroinflammation, and promoting neurogenesis in the brains of old mice.

Continue reading “Decoding the Aging Process: The Impact of Blood Dilution on Biological Age (Irina Conboy at EARD)” »

May 25, 2023

Kids & AI: A Guide To Prepare Them For The Challenges Ahead

Posted by in category: robotics/AI

A child interacts with Pepper, a robot that can sense how someone feels by analyzing facial expressions. See a guide for parents and teachers to help kids understand and interact with AI.


Parents and teachers need to learn and provide guidance to children to help them explore what will be a growing AI relationship.

May 25, 2023

New Vulcan Centaur rocket may test-fire its engines on the launch pad for 1st time on May 25

Posted by in category: space travel

United Launch Alliance (ULA) is gearing up for a critical test firing of its next-generation rocket after a recent fueling check, and it could happen as soon as this week.

On Monday morning (May 22), Bruno stated on Twitter that the company’s new Vulcan Centaur rocket was returning to Space Launch Complex 41 at Cape Canaveral Space Force Station. Now that the rocket is back at the pad, Vulcan’s static fire test (in which the rocket’s engines are ignited while it remains on the ground) could happen any day. “We are targeting as soon as tomorrow for the Flight Readiness Firing,” a representative from ULA told Space.com on Tuesday (May 23), “but it will depend on range availability.” On Wednesday (March 24), ULA CEO Tory Bruno intimated on Twitter that the test could happen as soon as Thursday (March 25).

May 25, 2023

New robotic bee is the first to fly stably in all directions like a real bee

Posted by in category: robotics/AI

Robotic bee that can fly fully in all directions like a real bee.


Researchers build bee robots that can twist.

May 25, 2023

Scientists find first evidence for new superconducting state in Ising superconductor

Posted by in categories: materials, physics

In a ground-breaking experiment, scientists from the University of Groningen, together with colleagues from the Dutch universities of Nijmegen and Twente and the Harbin Institute of Technology (China), have discovered the existence of a superconductive state that was first predicted in 2017.

They present evidence for a special variant of the FFLO superconductive state in the journal Nature. This discovery could have significant applications, particularly in the field of superconducting electronics.

The lead author of the paper is Professor Justin Ye, who heads the Device Physics of Complex Materials group at the University of Groningen. Ye and his team have been working on the Ising superconducting state. This is a special state that can resist magnetic fields that generally destroy , and that was described by the team in 2015.

May 25, 2023

Superconducting ‘fluxonium’ is the longest lasting qubit ever

Posted by in categories: computing, quantum physics

A fluxonium qubit can keep its most useful quantum properties for about 1.48 milliseconds, drastically longer than similar qubits currently favoured by the quantum computing industry.

By Karmela Padavic-Callaghan

May 25, 2023

Quantum matter breakthrough: Tuning density waves

Posted by in categories: particle physics, quantum physics

Scientists at EPFL have found a new way to create a crystalline structure called a “density wave” in an atomic gas. The findings can help us better understand the behavior of quantum matter, one of the most complex problems in physics. The research was published May 24 in Nature.

“Cold atomic gases were well known in the past for the ability to ‘program’ the interactions between atoms,” says Professor Jean-Philippe Brantut at EPFL. “Our experiment doubles this ability.” Working with the group of Professor Helmut Ritsch at the University of Innsbruck, they have made a breakthrough that can impact not only quantum research but quantum-based technologies in the future.

Scientists have long been interested in understanding how materials self-organize into complex structures, such as crystals. In the often-arcane world of quantum physics, this sort of self-organization of particles is seen in “,” where particles arrange themselves into a regular, repeating pattern or order; like a group of people with different colored shirts on standing in a line but in a pattern where no two people with the same color shirt stand next to each other.