Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Scientists use light to visualize magnetic domains in quantum materials

When something draws us in like a magnet, we take a closer look. When magnets draw in physicists, they take a quantum look. Scientists from Osaka Metropolitan University and the University of Tokyo have successfully used light to visualize tiny magnetic regions, known as magnetic domains, in a specialized quantum material. Their study was published in Physical Review Letters.

Study proposes that proteins can compartmentalize and form droplets inside cells

In physics, a system composed of two substances can be modeled in accordance with classical mixture theory, which considers the fraction corresponding to each constituent and the interactions among constituents. Examples include the coexistence of high-and low-density phases in supercooled water, and the coexistence of metal puddles in an insulating matrix in the Mott metal-insulator transition.

Harnessing quantum principles: Phased arrays within phased arrays for smarter, greener indoor optical wireless networks

Imagine a future where indoor wireless communication systems handle skyrocketing data demands and do so with unmatched reliability and speed. Traditional radio frequency (RF) technologies like Wi-Fi and Bluetooth are beginning to struggle, plagued by limited bandwidth and increasing signal congestion.

First ever visualization shows photoexcited charges traveling across the interface of two semiconductor materials

UC Santa Barbara researchers have achieved the first-ever “movie” of electric charges traveling across the interface of two different semiconductor materials. Using scanning ultrafast electron (SUEM) techniques developed in the Bolin Liao lab, the research team has directly visualized the fleeting phenomenon for the first time.

In double breakthrough, mathematician helps solve two long-standing problems

The solutions to these long-standing problems could further enhance our understanding of symmetries of structures and objects in nature and science, and of long-term behavior of various random processes arising in fields ranging from chemistry and physics to engineering, computer science and economics.


A Rutgers University-New Brunswick professor who has devoted his career to resolving the mysteries of higher mathematics has solved two separate, fundamental problems that have perplexed mathematicians for decades.

/* */