Menu

Blog

Archive for the ‘sustainability’ category: Page 195

Nov 10, 2022

Divers Growing Veggies in Underwater Greenhouses

Posted by in categories: food, sustainability

He’s hoping that his plastic orbs, which rest between 15 and 36 feet below the ocean’s surface and hold about 528 gallons of air, will provide a water-conserving, overall sustainable alternative to on-land agricultural operations, particularly helping dry coastal nations grow more food without having to desalinate more water — a costly and resource-intensive process. The plants require just a small bit of starter water, but from there, they’re self-sustaining. Sunlight heats the submerged spheres, which contain humid air that naturally condenses into freshwater on the walls and drips back into the soil.

“Since the underwater farm needs an external source of water only for the start-up of plants growing,” reads the company’s site, “our system could be useful for those locations far from the bodies of water available.”

Nov 10, 2022

UN COP27: Pro-climate conference delegates arrived in anti-climate private jets

Posted by in categories: climatology, sustainability

Climate change delegates traveling aboard private jets known to release more carbon dioxide emissions have added to the controversy surrounding the United Nations Climate Change Conference (COP27) in Sharm el-Sheikh, Egypt.

Hundreds of environmental activists stopped private jets from taking off from Amsterdam’s Schiphol Airport the day before the conference started last week.

Nov 10, 2022

Novel production process for solar-grade silicon

Posted by in category: sustainability

The SisAl Pilot project produces solar-grade silicon from Spanish quartz without using coal and with zero CO2 emissions. The company behind the project claims that the process is cheaper and more sustainable.

Nov 9, 2022

A high-speed sequential deposition strategy to fabricate photoactive layers for organic cells

Posted by in categories: solar power, sustainability

Organic photovoltaics, solar energy devices based on organic semiconductors, have so far achieved very promising results in experimental settings, both in terms of efficiency and stability. However, engineers have not yet devised reliable strategies to fabricate these devices on a large-scale at a reasonable cost.

Researchers at Wuhan University in China have recently identified an approach that could facilitate the rapid fabrication of photoactive layers for , without compromising the cells’ efficiency and stability. Their proposed strategy, introduced in a paper published in Nature Energy, is based on sequential deposition, a method often used to deposit organic semiconductors and perovskite films on substrates.

“To realize the commercialization of organic photovoltaics (OPVs), the golden triangle of power conversion efficiency (PCE), stability, and cost should be considered simultaneously,” Jie Min, one of the researchers who carried out the study, told TechXplore.

Nov 9, 2022

Elon Musk sold $4 billion worth of Tesla stock following the Twitter

Posted by in categories: Elon Musk, sustainability, transportation

Why does the world’s richest person need more cash?

Days after agreeing to acquire Twitter for his initial offer of $44 billion, Elon Musk sold off Tesla stock worth nearly $4 billion in the days between November 4 and November 8, the Wall Street Journal.

Last year, Musk became the world’s richest person riding on the stock value of his electric car-making company, Tesla. At its peak price of $410 a piece, Musk’s personal worth reached a never-before figure of $340 billion last year. As we turned into the new year, Tesla stock started shedding the rapid gains, and as 2022 draws to a close, it is now down 45 percent, a Bloomberg report said.

Nov 9, 2022

A new leaf unfolds in artificial photosynthesis

Posted by in categories: chemistry, solar power, sustainability

In 2021, researchers from Toyota Central R&D Labs developed a large, cost-effective artificial photosynthesis system that produces industrial formate at a solar-to-chemical conversion efficiency (ηSTC) of 10.5%1. Researchers from the lab say that, to their knowlege, this ηSTC is a first for a one metre squared cell.

Within the next 10 years, the company aims to establish artificial photosynthesis technology for wide-scale production of useful carbon compounds.

Nov 9, 2022

Examining the optimal working conditions for the brain as a model for new computers

Posted by in categories: bioengineering, mathematics, media & arts, robotics/AI, supercomputing, sustainability

With mathematical modeling, a research team has now succeeded in better understanding how the optimal working state of the human brain, called criticality, is achieved. Their results mean an important step toward biologically-inspired information processing and new, highly efficient computer technologies and have been published in Scientific Reports.

“In particular tasks, supercomputers are better than humans, for example in the field of artificial intelligence. But they can’t manage the variety of tasks in —driving a car first, then making music and telling a story at a get-together in the evening,” explains Hermann Kohlstedt, professor of nanoelectronics. Moreover, today’s computers and smartphones still consume an enormous amount of energy.

“These are no sustainable technologies—while our brain consumes just 25 watts in everyday life,” Kohlstedt continues. The aim of their interdisciplinary research network, “Neurotronics: Bio-inspired Information Pathways,” is therefore to develop new electronic components for more energy-efficient computer architectures. For this purpose, the alliance of engineering, life and investigates how the is working and how that has developed.

Nov 9, 2022

Wireless power from space

Posted by in categories: business, government, solar power, space, sustainability

Solar power gathered far away in space, seen here being transmitted wirelessly down to Earth to wherever it is needed. ESA plans to investigate key technologies needed to make Space-Based Solar Power a working reality through its SOLARIS initative. One such technology – wireless power transmission – was recently demonstrated in Germany to an audience of decision makers from business and government.

The demonstration took place at Airbus’ X-Works Innovation Factory in Munich. Using microwave beaming, green energy was transmitted green energy between two points representing ‘Space’ and ‘Earth’ over a distance of 36 metres.

The received power was used to light up a model city, produce green hydrogen by splitting water and even to produce the world’s first wirelessly cooled 0% alcohol beer in a fridge before serving to the watching audience.

Nov 9, 2022

Scientists Engineer Bacteria to Recycle Plastic Waste Into Valuable Chemicals

Posted by in categories: biological, chemistry, economics, sustainability

Plastic waste is clogging up our rivers and oceans and causing long-lasting environmental damage that is only just starting to come into focus. But a new approach that combines biological and chemical processes could greatly simplify the process of recycling it.

While much of the plastic we use carries symbols indicating it can be recycled, and authorities around the world make a big show about doing so, the reality is that it’s easier said than done. Most recycling processes only work on a single type of plastic, but our waste streams are made up of a complex mixture that can be difficult and expensive to separate.

On top of that, most current chemical recycling processes produce end products of significantly worse quality that can’t be recycled themselves, which means we’re still a long way from the goal of a circular economy when it comes to plastics.

Nov 8, 2022

Solar cells one-thousandth the size of human hair can resist space radiation

Posted by in categories: physics, solar power, space, sustainability

Earth’s low orbit is filling up, meaning radiation-tolerant cell designs are required as satellites head to higher orbits. Will these new ones do?

Scientists have developed a radiation-tolerant photovoltaic cell design that features an ultrathin layer of light-absorbing material. According to a new study published today (Nov .08) in the Journal of Applied Physics by AIP Publishing.

Significantly, the ultra-thin solar cells not only surpass earlier suggested thicker solar cells in resilience to irradiation; they also produce the same amount of power from converted sunlight after 20 years of use. Additionally, the novel photovoltaic cells could reduce load and considerably lower launch expenses. Barthel.