Toggle light / dark theme

On this day, April 25, in 1929, the world learned how astronomer Edwin Hubble had discovered that the universe was much larger than we had believed. On this day in 2025, you can preorder a book and on the 29th learn about this and four other Astrophysics discoveries that changed how we see the universe — and ourselves — in The Story of Astrophysics in Five Revolutions.

By Ersilia Vaudo, translated by Vanessa Di Stefano. If you use this link we get a penny or something.

He had published his seminal paper in the March issue of Astrophysical Journal but on April 25th in Proceedings of the National Academy of Sciences he published the how, and people began to think about what it meant. He had discovered that the collection of gas and dust we call Andromeda was actually another galaxy.

Using the Five-hundred-meter Aperture Spherical Radio Telescope (FAST), Chinese astronomers have discovered a new millisecond pulsar. The newfound pulsar, designated PSR J2129-1210O, was missed by previous searches as its spin period is close to the harmonics of the known pulsar PSR J2129+1210A.

The finding was reported in a paper published April 23 on the arXiv pre-print server.

Pulsars are highly magnetized, rotating emitting a beam of electromagnetic radiation. The most rapidly rotating pulsars, with rotation periods below 30 milliseconds, are known as (MSPs).

Many atomic nuclei have a magnetic field similar to that of Earth. However, directly at the surface of a heavy nucleus such as lead or bismuth, it is trillions of times stronger than Earth’s field and more comparable to that of a neutron star. Whether we understand the behavior of an electron in such strong fields is still an open question.

A research team led by TU Darmstadt at the GSI Helmholtz Center for Heavy Ion Research has now taken an important step toward clarifying this question. Their findings have been published in Nature Physics. The results confirm the .

Hydrogen-like ions, i.e., to which only a is bound, are theoretically particularly easy to describe. In the case of heavy nuclei with a high proton number—bismuth, for example, has 83 positively charged protons in its nucleus—the strong electrical attraction binds the electron close to the nucleus and thus within this extreme . There, the electron aligns its own magnetic field with that of the nucleus like a compass needle.

The NASA New Horizons spacecraft’s extensive observations of Lyman-alpha emissions have resulted in the first-ever map from the galaxy at this important ultraviolet wavelength, providing a new look at the galactic region surrounding our solar system. The findings are described in a new study authored by the SwRI-led New Horizons team.

The newly published research paper detailing the observations and their interpretation, “The Lyman-alpha Sky as Observed by New Horizons at 57 AU,” by R.G. Gladstone and co-authors appears in The Astronomical Journal.

“Understanding the Lyman-alpha background helps shed light on nearby galactic structures and processes,” said SwRI’s Dr. Randy Gladstone, the study’s lead investigator and first author of the publication. “This research suggests that hot interstellar gas bubbles like the one our is embedded within may actually be regions of enhanced hydrogen gas emissions at a wavelength called Lyman alpha.”

NASA continues to mark progress on plans to work with commercial and international partners as part of the Gateway program. The primary structure of HALO (Habitation and Logistics Outpost) arrived at Northrop Grumman’s facility in Gilbert, Arizona, where it will undergo final outfitting and verification testing.

HALO will provide Artemis astronauts with space to live, work, and conduct scientific research. The habitation module will be equipped with essential systems including command and control, data handling, energy storage, power distribution, and thermal regulation.

Following HALO’s arrival on April 1 from Thales Alenia Space in Turin, Italy, where it was assembled, NASA and Northrop Grumman hosted an April 24 event to acknowledge the milestone, and the module’s significance to lunar exploration. The event opened with remarks by representatives from Northrop Grumman and NASA, including NASA’s Acting Associate Administrator for Exploration Systems Development Lori Glaze, Gateway Program Manager Jon Olansen, and NASA astronaut Randy Bresnik. Event attendees, including Senior Advisor to the NASA Administrator Todd Ericson, elected officials, and local industry and academic leaders, viewed HALO and virtual reality demonstrations during a tour of the facilities.

Despite its uniquely rich inventory of organic molecules, Saturn’s largest moon, Titan, may be able to support only a minuscule amount of biomass, if life exists on the moon, according to a study using bioenergetic modeling.

Titan, Saturn’s largest moon, is a strange, alien world. Covered in rivers and lakes of liquid methane, icy boulders and dunes of soot-like “sand,” its topography has long fascinated scientists and invited speculation on whether lifeforms might lurk beneath the moon’s thick, hazy atmosphere.

An international team of researchers co-led by Antonin Affholder at the U of A Department of Ecology and Evolutionary Biology and Peter Higgins at Harvard University’s Department of Earth and Planetary sciences set out to develop a realistic scenario of what life on Titan might look like if it does exist, where it is most likely to occur and how much of it might be present.

IN A NUTSHELL 🚀 The ACES mission by the European Space Agency aims to redefine time measurement in space with unmatched precision. ⏱️ ACES will test Einstein’s theories of relativity by measuring how time bends, slows, and stretches under cosmic conditions. 🔬 Using advanced atomic clocks like PHARAO and SHM, ACES will explore fundamental constants