Toggle light / dark theme

Go to: https://brilliant.org/arvinash — you can sign up for free! And the first 200 people will get 20% off their annual membership. Enjoy!

Two new recently published, peer-reviewed scientific papers show that real warp drive designs based on real physics may be possible. They are realistic and physical, which had not been the case in the past. In a paper published in 1994, Mexican physicist Miguel Alcubierre showed theoretically that an FTL warp drive could work within the laws of physics. But it would require huge amounts of negative mass or energy. Such a thing is not known to exist.
0:00 Problem with C
2:21 General Relativity.
3:15 Alcubierre warp.
4:40 Bobrick & Martire solution.
7:15 Types of warp drives.
8:42 Spherical Warp drive.
11:32 FTL using Positive Energy.
13:14 Next steps.
14:08 Further education Brilliant.

In a recent paper published by Applied Physics, authors Alexey Bobrick and Gianni Martire, outline how a physically feasible warp drive could in principle, work, without the need for negative energy. I spoke to them. They had technical input on this video.

What Alcubierre did in his paper is figure out a shape that he believed spacetime needed to have in order for a ship to travel faster than light. Then he solved Einstein’s equation for general relativity to determine the matter and energy he would need to generate the desired curvature. It could only work with negative energy. This is mathematically consistent, but meaningless because negative mass is not known to exist. Negative mass is not the same as anti-matter. Antimatter has positive energy and mass.

Theoretical warp technology exists in what we know as the Alcubierre drive. In this video, I will explain how this theoretical warp technology works and the problems that we face in developing it.
You will also get to see some mathematically accurate simulations of a spaceship using an Alcubierre drive, travelling at 1,000 light years per second!

In Star Trek, Star Wars, Dune and many other sci-fi stories where space travel exists, the common question that viewers have is: how do these humans achieve faster than light travel? The term “Warp travel” and “Warp speed” were originally coined by the Star Trek franchise. It is also known by other franchises as “Jump” or “folding of space” and the engines that cause this to happen are the “warp drive” or the “hyper drive”
Ultimately, the idea of bending space is embedded within all of these sci-fi stories, and with good reason.

It is impossible to travel faster than light within space. But space itself can bend, fold, move, expand at any speed or rate.

The alcubierre drive uses the principals in general relativity to bend space around a spaceship in such a way, that the space itself begins to move, carrying along anything within it. So although the spaceship is not technically moving within the space it occupies, the space around the spaceship allows motion to occur.

Hidden patterns in electric propulsion plasma beams could help ensure the success of long-term space missions. Go faster, farther, more efficiently.

That’s the goal driving spacecraft propulsion engineers like Chen Cui, a new assistant professor at the University of Virginia School of Engineering and Applied Science. Cui is exploring ways to improve electric propulsion thrusters — a key technology for future space missions.

“In order to ensure the technology remains viable for long-term missions, we need to optimize EP integration with spacecraft systems,” Cui said.

Scientists have created over a million simulated cosmic images using the power of supercomputers to anticipate the capabilities of NASA

NASA, the National Aeronautics and Space Administration, is the United States government agency responsible for the nation’s civilian space program and for aeronautics and aerospace research. Established in 1958 by the National Aeronautics and Space Act, NASA has led the U.S. in space exploration efforts, including the Apollo moon-landing missions, the Skylab space station, and the Space Shuttle program.

New Shepard is a rocket manufactured by Blue Origin for space tourism, however the newest mission will be simulating the Moon’s gravity and flying 30 payloads to test lunar related technology. \r.

\r.

You can watch the action live here or at Space.com!

3D printing news News NASA and Rocket Lab Enter a New Era With the Neutron Rocket.

Published on January 27, 2025 by Madeleine P.

With the goal of further expanding its reach in space missions, NASA has signed an agreement with Rocket Lab USA, Inc. to integrate the Neutron rocket into the VADR program. This is a program to procure launch services at competitive prices and reduce mission requirements for spacecraft that have not yet been launched into orbit. Neutron is a medium-range launch vehicle manufactured by Rocket Lab USA that is partially reusable and powered by nine 3D-printed Archimedes engines designed to increase the efficiency and flexibility of space launches.

Go to https://ground.news/startalk to stay fully informed on the latest Space and Science news. Subscribe through our link for 50% off unlimited access to the Vantage plan this month.

Could you travel back in time through a wormhole? Neil deGrasse Tyson sits down with theoretical physicist and Nobel Laureate Kip Thorne to reflect on discovering gravitational waves with LIGO, the science in the movie Interstellar, black holes, and many more mysteries still yet to be answered.

Discover the origin story of the movie Interstellar on its 10th anniversary. Kip explains how science, not fiction, shaped the film’s narrative—from the colossal waves on Miller’s planet to the physics behind black hole time dilation. Discover the recipe for how to create a wormhole and how turning on a time machine could cause it to self-destruct. Plus, learn about the Casimir effect, exotic particles, and how LIGO manipulated vacuum fluctuations to bypass the uncertainty principle.

Neil and Kip dig into the origins of gravitational wave detection, tracing its roots to Joe Weber’s early experiments and Ray Weiss’s unpublished paper. Kip reflects on the decades of work required to make LIGO a success, the challenges of measuring distortions a fraction of a proton’s width, and the historic detection of gravitational waves in 2016 that confirmed Einstein’s predictions.

Find out more about Bitdefender’s two decades of unparalleled cybersecurity excellence: https://bitdefend.me/StarTalkTA

Could we create warp drive someday? In this Star Trek-themed episode, Neil deGrasse Tyson and co-host Chuck Nice team up with astrophysicist Charles Liu to dive into the science, technology, and legacy of one of the most influential sci-fi franchises of all time: Star Trek.

We answer questions about quantum entanglement, the size of electrons, and the real science behind Trek tech or Treknology. How close are we to warp drives, transporters, and subspace communication? You might be surprised to hear what’s theoretically possible and what remains in the realm of science fiction.

We discuss technology that exists already and the solutions to storytelling challenges through warp drives and dilithium crystals. Learn about the show’s physics, from phasers and antimatter to the mycelium network’s fascinating parallels with fungal biology. How do you store antimatter without it annihilating? Plus, find out who everyone’s favorite characters are and who they relate to most.

To unite humanity.


Before we landed on the Moon, in the early days of the Cold War, Project Orion contemplated using Nuclear Bombs to power spaceships to new worlds and stars. More than half a century later, new technologies may see this concept reintroduced bigger, better, and safer. Could the most terrifying weapon of the 20th Century become the Great Hope of the 21st?

Start Forging New Worlds: https://www.worldanvil.com/isaac-arthur.

Spacecraft powered by electric propulsion could soon be better protected against their own exhaust, thanks to new supercomputer simulations.

Electric propulsion is a more efficient alternative to traditional chemical rockets, and it’s being increasingly used on space missions, starting off with prototypes on NASA’s Deep Space 1 and the European Space Agency’s SMART-1 in 1998 and 2003, respectively, and subsequently finding use on flagship science missions such as NASA’s Dawn and Psyche missions to the asteroid belt. There are even plans to use electric propulsion on NASA’s Lunar Gateway space station.